Thermal analysis of CuMg alloys deformed by equal channel angular pressing

Abstract

The thermal behavior of two copper alloys, with 0.2 and 0.5 mass % of Mg, was analyzed after severe plastic deformation processing by Equal Channel Angular Pressing (ECAP). Both alloys were forced to be passed through a 90º inner angle ECAP die at room temperature up to 16 passes following route Bc. The thermal stability was analyzed in terms of the recrystallization kinetics by using the Various Heating Rates method, derived from the Johnson–Mehl–Avrami–Kolmogorov equation, after analyzing the Differential Scanning Calorimetry peaks for both alloys at any pass of ECAP. The calculated recrystallization parameters included the activation energies (E (kJ mol−1) ECuMg02 = 42.6 ± 19.8 ECuMg05 = 52.7 ± 13 kJ mol−1) and the kinetic exponent n which took an average value of ≈ 1.75, irrespective of the considered alloy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Segal VM. Materials processing by simple shear. Mater Sci Eng A. 1995;197:157–64.

    Google Scholar 

  2. 2.

    Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981.

    CAS  Google Scholar 

  3. 3.

    Segal VM. Mechanics of continuous equal-channel angular extrusion. J Mater Process Technol. 2010;210:542–9.

    CAS  Google Scholar 

  4. 4.

    Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A. Severe plastic deformation (SPD) processes for metals. CIRP Ann Manuf Technol. 2008;57:716–35.

    Google Scholar 

  5. 5.

    Estrin Y, Vinograd A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782–817.

    CAS  Google Scholar 

  6. 6.

    Lugo N, Llorca N, Cabrera JM, Horita Z. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater Sci Eng A. 2008;477:366–71.

    Google Scholar 

  7. 7.

    Kvackaj T, Kovacova A, Kvackaj M, Kocisko R, Litynska-Dobrzynska L, Stoyka V, Mihailikova M. TEM studies of structure in OFHC copper processed by equal channel angular rolling. Micron. 2012;43:720–4.

    CAS  Google Scholar 

  8. 8.

    Higuera-Cobos OF, Cabrera JM. Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion. Mater Sci Eng A. 2013;571:103–14.

    CAS  Google Scholar 

  9. 9.

    Higuera-Cobos OF, Calvillo PR, Cabrera JM. Thermal stability and microstructural behavior of ECAP processed copper. AIP Conf Proc. 2011;1353:553–8.

    Google Scholar 

  10. 10.

    Molodova X, Gottstein G, Winning M, Hellmig RJ. Thermal stability of ECAP processed pure copper. Mater Sci Eng A. 2007;460–461:204–13.

    Google Scholar 

  11. 11.

    Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF. Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 2009;57:1586–601.

    CAS  Google Scholar 

  12. 12.

    Ko YG, Namgung S, Lee BU, Shin DH. Mechanical and electrical responses of nanostructured Cu–3 wt%Ag alloy fabricated by ECAP and cold rolling. J Alloys Comp. 2010;504S:S448–S45151.

    Google Scholar 

  13. 13.

    Zhang ZJ, Duan QQ, An XH, Wu SD, Yang G, Zhang ZF. Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing. Mater Sci Eng A. 2011;528:4259–67.

    Google Scholar 

  14. 14.

    Wei KX, Wei W, Wang F, Du QB, Alexandrov V, Hu J. Microstructure, mechanical properties and electrical conductivity of industrial Cu–05%Cr alloy processed by severe plastic deformation. Mater Sci Eng A. 2011;528:1478–84.

    Google Scholar 

  15. 15.

    Xu CZ, Wang QJ, Zheng MS, Zhu JW, Li JD, Huang MQ, Jia QM, Du ZZ. Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing. Mater Sci Eng A. 2007;459:303–8.

    Google Scholar 

  16. 16.

    Maki K, Ito Y, Matsunaga H, Mori H. Solid-solution copper alloys with high strength and high electrical conductivity. Scripta Mater. 2012;68:777–80.

    Google Scholar 

  17. 17.

    Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process. J Mater Process Technol. 2011;211:1085–90.

    CAS  Google Scholar 

  18. 18.

    Zhu C, Ma A, Jiang J, Li X, Song D, Yang D, Yuan Y, Chen J. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of conform-produced Cu–Mg alloys. J Alloys Comp. 2014;582:135–40.

    CAS  Google Scholar 

  19. 19.

    Yang G, Li Z, Yuan Y, Lei A. Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing. J Alloys Comp. 2015;640:347–54.

    CAS  Google Scholar 

  20. 20.

    Rodríguez-Calvillo P, Ferrer N, Cabrera JM. Analysis of microstructure and strengthening in CuMg alloys deformed by equal channel angular pressing. J Alloys Comp. 2015;626:340–8.

    Google Scholar 

  21. 21.

    Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29.

    CAS  Google Scholar 

  22. 22.

    Lugo N, Llorca N, Suñol JJ, Cabrera JM. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. J Mater Sci. 2010;45:2264–73.

    CAS  Google Scholar 

  23. 23.

    Muñoz JA, Higuera OF, Hernández-Expósito A, Boulaajaj A, Bolmaro RE, Dumitru FD, Rodriguez-Calvillo P, Moreira Jorge A, Cabrera JM. Thermal stability of ARMCO iron processed by ECAP. Int J Adv Manuf Technol. 2018;98:2917–32.

    Google Scholar 

  24. 24.

    Kolmogorov AN. On the statistical theory of metal crystallization. Izv Akad Nauk SSSR Ser Mat. 1937;3:355–60.

    Google Scholar 

  25. 25.

    Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;1352:416–42.

    Google Scholar 

  26. 26.

    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    CAS  Google Scholar 

  27. 27.

    Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    CAS  Google Scholar 

  28. 28.

    Cao WQ, Gu CF, Pereloma EV, Davies CHJ. Stored energy, vacancies and thermal stability of ultra-fine grained copper. Mater Sci Eng A. 2008;492:74–9.

    Google Scholar 

  29. 29.

    Sarkar A, Suwas S, Goran D, Funderberger JJ, Toth LS, Grosdidier T. Equal channel angular pressing processing routes and associated structure modification: a differential scanning calorimetry and X-ray line profile analysis. Powder Diffr. 2012;27:194–9.

    CAS  Google Scholar 

  30. 30.

    Wang Y, Lapokov R, Wang JT, Estrin Y. Effect of back pressure on the thermal stability of severely deformed copper. IOP Conf Ser Mater Sci Eng. 2014;63:012168.

    Google Scholar 

  31. 31.

    Larbi FH, Abib K, Khereddine Y, Alili B, Kawasaki M, Bradai D, Langdon TG (2013) DSC analysis of an ECAP-deformed Cu–Ni–Si Alloy. Metal, Brno, Czech Republic, EU

  32. 32.

    Abib K, Hadj Larbi F, Rabhi L, Alili B, Bradai D. DSC analysis of commercial Cu–Cr–Zr alloy processed by equal channel angular pressing. Trans Nonferrous Met Soc China. 2015;25:838–43.

    CAS  Google Scholar 

  33. 33.

    Fellah L, Diha A, Boumerzoug Z. Microstructural study and recrystallization kinetics of deformed commercial copper wires. Acta Metall Slovaca. 2018;24:32–42.

    Google Scholar 

  34. 34.

    Pinto RDA, Ferreira LDR, Silva RAG. Effects of Co and Zr additions on the thermal behavior of the Cu81Al19 alloy. J Therm Anal Calorim. 2019;138:3525–33.

    CAS  Google Scholar 

  35. 35.

    Souza JS, Modesto DA, Silva RAG. Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions. J Therm Anal Calorim. 2019;138:3517–24.

    CAS  Google Scholar 

  36. 36.

    Hachouf M, Hamana D. Effect of Bi addition on precipitation and dissolution in Cu–9at%In and Cu–5at% Sb alloys. J Therm Anal Calorim. 2020;139:75–877.

    CAS  Google Scholar 

  37. 37.

    Wang Z, Wei R, Ouyang D, Wang J. Investigation on thermal stability and flame spread behavior of new and aged fine electrical wires. J Therm Anal Calorim. 2020;140:157–65.

    CAS  Google Scholar 

  38. 38.

    Benchabane G, Boumerzoug Z, Gloriant T, Thibon I. Microstructural characterization and recrystallization kinetics of cold rolled copper. Physica B: Cond Matter. 2011;406:1973–6.

    CAS  Google Scholar 

  39. 39.

    Pratap A, Patel AT. Crystallization kinetics of metallic glasses. Advances in crystallization processes. In: Y. Mastai (Ed.), http://www.intechopen.com/books/advances-in-crystallization-processes (2012)

  40. 40.

    Abd El-Raheem MM, Ali HM. Crystallization kinetics determination of Pb15Ge27Se58 chalcogenide glass by using the various heating rates (VHR) method. J Non-Crystalline Solids. 2010;356:77–82.

    CAS  Google Scholar 

  41. 41.

    Frost HJ, Ashby MF. Deformation-Mechanism maps. Oxford: Pergamon; 1982.

    Google Scholar 

  42. 42.

    Kuo CM, Lin CS. Static recovery activation energy of pure copper at room temperature. Scripta Mater. 2007;57:667–70.

    CAS  Google Scholar 

  43. 43.

    Hutchinson WB, Ray RK. Influence of phosphorus additions on annealing behaviour of cold-worked copper. Metal Sci. 1979;13:125–30.

    CAS  Google Scholar 

  44. 44.

    Dieter GE. Mechanical Metallurgy. London: McGraw-Hill Book Company; 1988.

    Google Scholar 

  45. 45.

    Butrymowicz DB, Manning JR, Read ME. Diffusion in copper and copper alloys. J Phys Chem Ref Data. 1977;6:1–50.

    CAS  Google Scholar 

  46. 46.

    Christian JW. The theory of transformation in metals and alloys. New York: Pergamon Press; 2002.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful the Generalitat de Catalunya and the European Commission for the support provided for this research, through ACC1Ó and FEDER resources, respectively, as part of the NUCLIS (Cooperative Technological Innovation Nuclei) Programme. JMC is also grateful to CONACYT (Mexico) for partial funding his sabbatical leave in UMSNH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José-María Cabrera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Calvillo, P., Ferrer, N. & Cabrera, JM. Thermal analysis of CuMg alloys deformed by equal channel angular pressing. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-10128-9

Download citation

Keywords

  • ECAP
  • DSC
  • VHR
  • CuMg alloy
  • Thermal stability