Skip to main content
Log in

Thermal and spectroscopic characterization of sol–gel-synthesized doped lanthanum gallate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a complex oxide solid solution consisting of lanthanum gallate with partial substitutions for strontium and magnesium (La0.9Sr0.1Ga0.8Mg0.2O2.85) was synthesized by the sol–gel route, aiming to obtain a sinter active powder and a final material that could be stoichiometrically controlled. The thermal behavior of the synthesized powder involves several steps of decomposition. The linear shrinkage of green compacts up to 1500 °C was 31%. The bulk conductivity of sintered specimens increases with sintering temperature up to 1400 °C. The stoichiometry was maintained for sintering temperatures up to 1450 °C. Elemental mapping obtained by energy-dispersive spectroscopy evidenced magnesium segregation at the grain boundaries. The overall results evidence the suitability of the synthesis method for preparing doped lanthanum gallate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9

Similar content being viewed by others

References

  1. Singh DP, Herrera CE, Singh B, Singh S, Singh RK, Kumar R. Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018;86:173–97.

    Article  CAS  Google Scholar 

  2. Grant JT, Venegas JM, McDermott WP, Hermans I. Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem Rev. 2018;118:2769–815.

    Article  CAS  Google Scholar 

  3. Sivula K, Van de Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater. 2016;1:15010.

    Article  CAS  Google Scholar 

  4. Sunarra J, Hashim SS, Zhu N, Zhou W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cells and membrane reactor: A review. Progr Energy Combust Sci. 2017;61:57–77.

    Article  Google Scholar 

  5. Zhao Y, Li XF, Yan B, Xiong DB, Li DJ, Lawes S, Sun L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater. 2016;6:1502175.

    Article  Google Scholar 

  6. Ishihara T, Honda M, Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc. 1994;116:3801–3.

    Article  CAS  Google Scholar 

  7. Feng M, Goodenough JB. A superior oxide-ion electrolyte. Eur J Solid State Inorg Chem. 1994;31:663–72.

    CAS  Google Scholar 

  8. Li M, Zhang Y, An M, Lü Z, Huang X, Xiao J, Wei B, Zhu X, Su W. Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3δ intermediate temperature electrolyte using conventional solid state reaction. J Power Sourc. 2012;218:233–6.

    Article  CAS  Google Scholar 

  9. Reis SL, Muccillo ENS. Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3δ with high ionic conductivity by solid-state synthesis. Ionics. 2018;24:1693–700.

    Article  CAS  Google Scholar 

  10. Zhang X, Liu T, Zhang H. Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1−xCoxO3δ dense diffusion barrier. Ionics. 2018;24:827–32.

    Article  CAS  Google Scholar 

  11. Rozumek M, Majewski P, Aldinger F, Künstler K, Tomandl G. Preparation and electrical conductivity of common impurity phases in (La, Sr)(Ga, Mg)O3 solid electrolytes. CFI-Ceramic Forum Int/Ber D Keram Ges. 2003;80:E35–E40.

    CAS  Google Scholar 

  12. Djurado E, Labeau M. Second phases in doped lanthanum gallate perovskites. J Eur Ceram Soc. 1998;18:1397–404.

    Article  CAS  Google Scholar 

  13. Chaubey N, Wani BN, Bharadwaj SR, Chattopadhyaya MC. Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La0.9Sr0.1Ga0.8Mg0.2O3δ for IT-SOFCs. J Therm Anal Calorim. 2013;112:155–64.

    Article  CAS  Google Scholar 

  14. Wendel CH, Gao Z, Barnett SA, Braun RJ. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage. J Power Sourc. 2015;283:329–42.

    Article  CAS  Google Scholar 

  15. Huang K, Feng M, Goodenough JB. Wet chemical synthesis of Sr- and Mg-doped LaGaO3, a perovskite-type oxide-ion conductor. J Am Chem Soc. 1996;79:1100–4.

    CAS  Google Scholar 

  16. Cristiani C, Zampori L, Latorrata S, Pelosato R, Dotelli G, Ruffo R. Carbonate coprecipitation synthesis of Sr- and Mg-doped LaGaO3. Mater Lett. 2009;63:1892–4.

    Article  CAS  Google Scholar 

  17. Marrero-López D, Martin-Sedeño MC, Peña-Martínez J, Ruiz-Morales JC, Ramos-Barrado JR. Microstructure and conductivity of La1−xSrxGa0.8Mg0.2O3δ electrolytes prepared using the freeze-drying method. J Am Ceram Soc. 2011;94:1031–9.

    Article  Google Scholar 

  18. Yu S, Bi H, Sun J, Zhu L, Yu H, Lu C, Liu X. Effect of grain size on the electrical properties of strontium and magnesium doped lanthanum gallate electrolytes. J Alloy Compd. 2019;777:244–51.

    Article  CAS  Google Scholar 

  19. Singh RK, Singh PS. Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3δ electrolyte via ethylene glycol route and its characterizations for IT-SOFC. Ceram Int. 2014;40:7177–84.

    Article  Google Scholar 

  20. Polini R, Pamio A, Traversa E. Effect of synthetic route on sintering behavior, phase purity and conductivity of Sr- and Mg-doped LaGaO3 perovskites. J Eur Ceram Soc. 2004;24:1365–70.

    Article  CAS  Google Scholar 

  21. Shi M, Xu Y, Liu A, Liu N, Wang C, Majewski P, Aldinger F. Synthesis and characterization of Sr- and Mg-doped lanthanum gallate electrolyte materials prepared via the Pechini method. Mater Chem Phys. 2009;114:43–6.

    Article  CAS  Google Scholar 

  22. Johnson DW Jr. Non-conventional powder preparation techniques. Am Ceram Soc Bull. 1981;60:221–2.

    CAS  Google Scholar 

  23. Marcilly C, Courty P, Delmon B. Preparation of highly dispersed mixed oxides and solid solutions by pyrolysis of amorphous precursors. J Am Ceram Soc. 1970;53:56–7.

    Article  CAS  Google Scholar 

  24. Reis SL, Muccillo ENS. Ionic conductivity of chemically synthesized La0.9Sr0.1Ga0.8Mg0.2O3δ solid electrolyte. Adv Mater Res. 2014;975:81–5.

    Article  Google Scholar 

  25. Romanova I, Kirillov S. Preparation of Cu, Ni and Cooxides by a citric acid-aided route. J Therm Anal Calorim. 2018;132:503–12.

    Article  CAS  Google Scholar 

  26. Porfirio TC, Muccillo ENS. Thermal and electrical properties of CaCu3Ti4O12 synthesized by soft chemistry route. J Therm Anal Calorim. 2018;133:851–7.

    Article  CAS  Google Scholar 

  27. Wiecinska P. Thermal degradation of organic additives used in colloidal shaping of ceramics investigated by the coupled DTA/TG/MS analysis. J Therm Anal Calorim. 2016;123:1419–30.

    Article  CAS  Google Scholar 

  28. Wu S, Chang Z, Wang K, Xiong W. Preparation and thermal behaviour of rare earth citrate hydrates. J Therm Anal. 1995;45:199–206.

    Article  CAS  Google Scholar 

  29. Bauerle JE. Study of solid electrolyte by a complex admittance method. J Phys Chem Solids. 1969;30:2657–70.

    Article  CAS  Google Scholar 

  30. Rozumek M, Majewski P, Sauter L, Aldinger F. Homogeneity region of strontium-and magnesium-containing LaGaO3 at temperatures between 1100ºC and 1500ºC in air. J Am Ceram Soc. 2003;86:1940–6.

    Article  CAS  Google Scholar 

  31. Oncel C, Ozkaya B, Gulgun MA. X-ray single phase LSGM at 1350 ºC. J Eur Ceram Soc. 2007;27:599–604.

    Article  CAS  Google Scholar 

  32. Zhao X, Li X, Xu N, Huang K. Beneficial effects of Mg-excess in La1xSrxGa1yMgy+zO3δ as solid electrolyte. Solid State Ionics. 2012;214:56–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FAPESP (2013/07296-2), CNPq (305889/2018-4), CAPES (Finance Code 001) and CNEN for financial supports, and the Laboratory of Electron Microscopy and Microanalysis (LMM/CECTM) at IPEN for SEM/EDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Reis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, S.L., Grosso, R.L. & Muccillo, E.N.S. Thermal and spectroscopic characterization of sol–gel-synthesized doped lanthanum gallate. J Therm Anal Calorim 146, 1561–1567 (2021). https://doi.org/10.1007/s10973-020-10113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10113-2

Keywords

Navigation