Skip to main content
Log in

Effect of quantitative characteristic structure of resole phenolic prepolymer resin on thermal stability, pyrolysis behaviors, and ablation properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The chemical structure of resole phenolic prepolymer resin is difficult to be accurately described because it is a mixture composed of different polymerization degree structures. Limited by the knowledge of prepolymer resin structure, the cross-linking degree (CLD) of cured resin and the effects of structure on the ablation properties remain unclear. The objective of this work is to understand the relationship between prepolymer resin structure, CLD of cured resin, and performance. The quantitative characteristic structure of resole prepolymer and CLD of curing resin was proposed in this work based on the full understanding of the chemical structure. A fast and accurate identification method was provided for the quality conformity identification of mass production of resole prepolymer phenolic resin. A novel CLD characterization method for high cross-linking resole phenolic resin was proposed. The results showed that the ablation properties of resole phenolic resin are optimum when formaldehyde/phenol value of prepolymer is in the range of 1.20–1.46. This study may provide meaningful information to the understanding of the ablation mechanism of resole phenolic resin, which is a benefit for developing novel anti-ablation resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Naderi A, Mazinani S, Ahmadi SJ, Sohrabian M, Arasteh R. Modified thermo-physical properties of phenolic resin/carbon fiber composite with nano zirconium dioxide. J Therm Anal Calorim. 2014;117:393–401.

    Article  CAS  Google Scholar 

  2. Cheng H, Xue H, Hong C, Zhang X. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird nest structure. Compos Sci Technol. 2017;140:63–72.

    Article  CAS  Google Scholar 

  3. Zhao T, Ye H, Zhang L, Cai Q. Experimental investigation on the specific heat of carbonized phenolic resin-based ablative materials. Int J Thermophys. 2017;38:151.

    Article  CAS  Google Scholar 

  4. Menapace C, Leonardi M, Secchi M, Bonfanti A, Gialanella S, Straffelini G. Thermal behavior of a phenolic resin for brake pad manufacturing. J Therm Anal Calorim. 2019;137:759–66.

    Article  CAS  Google Scholar 

  5. Chen J, Zhang W, Liu J, Ge H, Tian M, Liu J, et al. Improved thermal stability of phenolic resin by graphene-encapsulated nano-SiO2 hybrids. J Therm Anal Calorim. 2019;135:2377–87.

    Article  CAS  Google Scholar 

  6. Chen R, Xu X, Zhang Y, Lu S, Lo S. Characterization of ignition and combustion characteristics of phenolic fiber-reinforced plastic with different thicknesses. J Therm Anal Calorim. 2020;140:645–55.

    Article  CAS  Google Scholar 

  7. Tonge LY, Hodgkin J, Blicblau AS, Collins PJ. Effects of initial phenolformaldehyde (pf) reaction products on the curing properties of pf resin. J Therm Anal Calorim. 2001;64:721–30.

    Article  CAS  Google Scholar 

  8. King PW, Mitchell RH, Westwood AR, Rue DL. Structural analysis of phenolic resole resins. J Appl Polym Sci. 1974;18:1117–30.

    Article  CAS  Google Scholar 

  9. Holopainen T, Alvila L, Rainio J, Pakkanen TT. IR spectroscopy as a quantitative and predictive analysis method of phenol-formaldehyde resol resins. J Appl Polym Sci. 1998;69:2175–85.

    Article  CAS  Google Scholar 

  10. Rego R, Adriaensens PJ, Carleer RA, Gelan JM. Fully quantitative carbon-13 NMR characterization of resol phenol-formaldehyde prepolymer resins. Polymer. 2004;45:33–8.

    Article  CAS  Google Scholar 

  11. Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM. Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer. 2011;52:2445–52.

    Article  CAS  Google Scholar 

  12. Hill LW. Calculation of crosslink density in short chain networks. Prog Org Coat. 1997;31:235–43.

    Article  CAS  Google Scholar 

  13. Trick KA, Saliba TE. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon. 1995;33:1509–15.

    Article  CAS  Google Scholar 

  14. Jiang H, Wang J, Wu S, Wang B, Wang Z. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.

    Article  CAS  Google Scholar 

  15. Trick KA, Saliba TE, Sandhu SS. A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon. 1997;35:393–401.

    Article  CAS  Google Scholar 

  16. Ma W, Wang S, Cui JP, Zhang ST, Fan BC, He YZ. Thermal decomposition kinetic model of phenolic resin. Acta Phys Chim Sin. 2008;24:1090–4.

    Article  CAS  Google Scholar 

  17. Costa L, Di Montelera LR, Camino G, Weil ED, Pearce E. Structure-charring relationship in phenol-formaldehyde type resins. Polym Degrad Stab. 1997;56:23–35.

    Article  CAS  Google Scholar 

  18. Parker JA. The effects of molecular structure on the thermochemical properties of phenolics and related polymers. NASA TR R-276, Ames Research Center; 1967.

  19. Fitzer E, Schäfer W. The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon. 1970;8:353–64.

    Article  CAS  Google Scholar 

  20. Hirano K, Asami M. Phenolic resins-100 years of progress and their future. React Funct Polym. 2013;73:256–69.

    Article  CAS  Google Scholar 

  21. Chen ZQ, Zeng WJ, Chen YF, Li WK, Liu AH. Influence of F/P on structure and thermal property of phenolic resin. Key Eng Mater. 2012;500:98–103.

    Article  CAS  Google Scholar 

  22. Hu XM, Zhao YY, Cheng WM. Effect of formaldehyde/phenol ratio (f/p) on the properties of phenolic resins and foams synthesized at room temperature. Polym Compos. 2015;36:1531–40.

    Article  CAS  Google Scholar 

  23. Wang Y, Wang S, Bian C, Zhong Y, Jing X. Effect of chemical structure and cross-link density on the heat resistance of phenolic resin. Polym Degrad Stab. 2015;111:239–46.

    Article  CAS  Google Scholar 

  24. Kissinger HE. Reaction kineticsin differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  25. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;11:1881–6.

    Article  Google Scholar 

  26. Wei H, Zhang Q, Li J, Li C, Li Z. Suggestion of the non-isothermal decomposition kinetic mechanism function for phenolic resin. Polym Mater Sci Eng. 2014;30:100–5.

    CAS  Google Scholar 

  27. Jiang H, Wang J, Wu S, Yuan Z, Hu Z, Wu R, et al. The pyrolysis mechanism of phenol formaldehyde resin. Polym Degrad Stab. 2012;97:1527–33.

    Article  CAS  Google Scholar 

  28. Wang J, Jiang H, Jiang N. Study on the pyrolysis of phenol-formaldehyde (pf) resin and modified pf resin. Thermochim Acta. 2009;196:136–42.

    Article  Google Scholar 

  29. Sobera M, Hetper J. Pyrolysis-gas chromatography-mass spectrometry of cured phenolic resins. J Chromatogr A. 2003;993:131–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Science and Technology on Advanced Functional Composites Laboratory for funding the research under the Grant No. HTKJ2019KL703002. Thanks to Prof. Zhongping Li for his useful suggestions on the research of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Methodology: H.H., L.L. Formal analysis and investigation: H.H., R.Y. Writing-original draft preparation: H.H. Writing-review and editing: H.H., Y.Z. Data collection and analysis: H.H., Y.Z. Funding acquisition: J.W. Supervision: Y.Y.

Corresponding author

Correspondence to Yunhua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhang, Y., Liu, L. et al. Effect of quantitative characteristic structure of resole phenolic prepolymer resin on thermal stability, pyrolysis behaviors, and ablation properties. J Therm Anal Calorim 146, 1049–1062 (2021). https://doi.org/10.1007/s10973-020-10096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10096-0

Keywords

Navigation