Skip to main content
Log in

New water-based fluorescent nanofluid containing 2D titanium carbide MXene sheets: a comparative study of its thermophysical, electrical and optical properties with amine and carboxyl covalently functionalized graphene nanoplatelets

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aqueous colloidal suspension of two-dimensional (2D) sp2 carbon and carbide materials has promising thermal and electrical properties to be used as a coolant for heat transfer applications. However, the application of graphene nanoplatelets (GNPs) nanofluids is extensively limited by its insufficient dispersibility and stability in the base fluid of water. Therefore, surface modification and post-functionalization of GNPs should be considered as further treatments to enhance their nanofluid properties, which is not economical for large-scale production. In the current study, we presented the processing, thermophysical, electrical and optical properties of a new generation of carbon-based nanofluid containing highly exfoliated autofluorescent hydrophilic 2D titanium carbide MXene (Ti3C2Tx) nanosheets. For the first time, the microstructure and nanofluid properties of the water-based Ti3C2Tx at two concentrations of 0.1 and 0.2 mass% have been further compared with covalently and non-covalently functionalized GNPs. Our results showed that the thermal/electrical conductivities of 0.1 and 0.2% MXene are remarkably higher (0.732 and 0.828 W m─1 K─1, 1213 and 2690 µS cm─1, respectively) compared with non-covalent GNPs at same concentrations (0.679 and 0.702 W m─1 K─1, 723 and 1425 µS cm─1, respectively) and competitive with COOH- and NH2-mediated GNPs samples. Additionally, the prominent stability and autofluorescence properties of MXene composite are other advantages supporting its nanofluid applications. The fluorescent MXene nanofluid at the different excitation/emission wavelengths (377–586 nm/447–647 nm) conferred a suitable optical contrast for visualization. Taken together, Ti3C2Tx material might open up a robust gateway for the application of carbon-based nanofluids in advanced heat transfer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shanbedi M, Heris SZ, Amiri A, Eshghi H. Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: a study on thermo-physical properties of ferromagnetic nanofluid. J Taiwan Inst Chem Eng. 2016;60:547–54.

    Article  CAS  Google Scholar 

  2. Shanbedi M, Heris SZ, Amiri A, Hosseinipour E, Eshghi H, Kazi S. Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manag. 2015;105:1366–76.

    Article  CAS  Google Scholar 

  3. Shanbedi M, Heris SZ, Baniadam M, Amiri A, Maghrebi M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Ind Eng Chem Res. 2012;51(3):1423–8.

    Article  CAS  Google Scholar 

  4. Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116(5):3369–75.

    Article  CAS  Google Scholar 

  5. Tabari ZT, Heris SZ. Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid. J Dispersion Sci Technol. 2015;36(2):196–204.

    Article  CAS  Google Scholar 

  6. Amiri A, Ahmadi G, Shanbedi M, Savari M, Kazi S, Chew B. Microwave-assisted synthesis of highly-crumpled, few-layered graphene and nitrogen-doped graphene for use as high-performance electrodes in capacitive deionization. Sci Rep. 2015;5:17503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Samadzadeh A, Heris SZ, Hashim I, Mahian O. An experimental investigation on natural convection of non-covalently functionalized MWCNTs nanofluids: effects of aspect ratio and inclination angle. Int Commun Heat Mass Transfer. 2020;111:104473.

    Article  CAS  Google Scholar 

  8. Hosseinipour E, Heris SZ, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2016;124(1):205–14.

    Article  CAS  Google Scholar 

  9. Amiri A, Shanbedi M, Rafieerad A, Rashidi MM, Zaharinie T, Zubir MNM, et al. Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation. J Taiwan Inst Chem Eng. 2017;71:480–93.

    Article  CAS  Google Scholar 

  10. Mehrali M, Sadeghinezhad E, Akhiani AR, Latibari ST, Talebian S, Dolatshahi-Pirouz A, et al. An ecofriendly graphene-based nanofluid for heat transfer applications. J Clean Prod. 2016;137:555–66.

    Article  CAS  Google Scholar 

  11. Bahiraei M, Heshmatian S. Graphene family nanofluids: a critical review and future research directions. Energy Convers Manag. 2019;196:1222–56.

    Article  CAS  Google Scholar 

  12. Sadri R, Hosseini M, Kazi SN, Bagheri S, Abdelrazek AH, Ahmadi G, et al. A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. J Colloid Interface Sci. 2018;509:140–52.

    Article  PubMed  CAS  Google Scholar 

  13. Hilo A, Talib ARA, Nfawa SR, Sultan MTH, Hamid MFA, Bheekhun MN. Heat transfer and thermal conductivity enhancement using graphene nanofluid: a review. J Adv Res Fluid Mech Thermal Sci. 2019;55(1):74–87.

    Google Scholar 

  14. Sarsam WS, Amiri A, Zubir MNM, Yarmand H, Kazi S, Badarudin A. Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas. Colloids Surf A. 2016;500:17–31.

    Article  CAS  Google Scholar 

  15. Amiri A, Naraghi M, Ahmadi G, Soleymaniha M, Shanbedi M. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem. 2018;8:40–71.

    Article  CAS  Google Scholar 

  16. Shazali SS, Amiri A, Zubir MNM, Rozali S, Zabri MZ, Sabri MFM, et al. Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents. Mater Chem Phys. 2018;206:94–102.

    Article  CAS  Google Scholar 

  17. Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials. 2017;7(6):131.

    Article  PubMed Central  CAS  Google Scholar 

  18. Amiri A, Shanbedi M, Dashti H. Thermophysical and rheological properties of water-based graphene quantum dots nanofluids. J Taiwan Inst Chem Eng. 2017;76:132–40.

    Article  CAS  Google Scholar 

  19. Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Kazi S, Chew B, et al. Mass production of highly-porous graphene for high-performance supercapacitors. Sci Rep. 2016;6(1):1–11.

    Article  CAS  Google Scholar 

  20. Arzani HK, Amiri A, Kazi S, Chew B, Badarudin A. Experimental and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized graphene nanoplatelet-based water nanofluids in an annular heat exchanger. Int Commun Heat Mass Transf. 2015;68:267–75.

    Article  CAS  Google Scholar 

  21. Shanbedi M, Jafari D, Amiri A, Heris SZ, Baniadam M. Prediction of temperature performance of a two-phase closed thermosyphon using artificial neural network. Heat Mass Transf. 2013;49(1):65–73.

    Article  Google Scholar 

  22. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, et al. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers Manag. 2016;114:38–49.

    Article  CAS  Google Scholar 

  23. Solangi K, Amiri A, Luhur M, Ghavimi SAA, Zubir MNM, Kazi S, et al. Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer. Int Commun Heat Mass Transf. 2016;73:43–53.

    Article  CAS  Google Scholar 

  24. Arzani HK, Amiri A, Kazi S, Badarudin A, Chew B. Heat transfer performance of water-based tetrahydrofurfuryl polyethylene glycol-treated graphene nanoplatelet nanofluids. RSC Adv. 2016;6(70):65654–69.

    Article  CAS  Google Scholar 

  25. Naddaf A, Heris SZ. Density and rheological properties of different nanofluids based on diesel oil at different mass concentrations. J Therm Anal Calorim. 2019;135(2):1229–42.

    Article  CAS  Google Scholar 

  26. Naddaf A, Heris SZ. Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int Commun Heat Mass Transf. 2018;95:116–22.

    Article  CAS  Google Scholar 

  27. Mehrali M, Sadeghinezhad E, Akhiani AR, Latibari ST, Metselaar HSC, Kherbeet AS, et al. Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field. Powder Technol. 2017;308:149–57.

    Article  CAS  Google Scholar 

  28. Suganthi K, Rajan K. Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017;76:226–55.

    Article  CAS  Google Scholar 

  29. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, et al. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.

    Article  CAS  Google Scholar 

  30. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115(17):8527–33.

    Article  CAS  Google Scholar 

  31. Sati P, Shende RC, Ramaprabhu S. An experimental study on thermal conductivity enhancement of DI water-EG based ZnO (CuO)/graphene wrapped carbon nanotubes nanofluids. Thermochim Acta. 2018;666:75–81.

    Article  CAS  Google Scholar 

  32. Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A. Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: experimental approach. Int Commun Heat Mass Transf. 2017;87:30–9.

    Article  CAS  Google Scholar 

  33. Nine MJ, Chung H, Tanshen MR, Osman NA, Jeong H. Is metal nanofluid reliable as heat carrier? J Hazard Mater. 2014;273:183–91.

    Article  PubMed  CAS  Google Scholar 

  34. Hamid A, Hafeez A, Khan M, Alshomrani A, Alghamdi M. Heat transport features of magnetic water–graphene oxide nanofluid flow with thermal radiation: stability Test. Eur J Mech B Fluids. 2019;76:434–41.

    Article  Google Scholar 

  35. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthcare Mater. 2019;8(16):1900569.

    Article  CAS  Google Scholar 

  36. Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthcare Mater. 2019;8(1):1801137.

    Article  CAS  Google Scholar 

  37. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–53.

    Article  PubMed  CAS  Google Scholar 

  38. Rafieerad A, Sequiera GL, Yan W, Kaur P, Amiri A, Dhingra S. Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J Mech Behav Biomed Mater. 2020;101:103440.

    Article  PubMed  CAS  Google Scholar 

  39. Amiri A, Chen Y, Teng CB, Naraghi M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 2019;25:731–9.

    Article  Google Scholar 

  40. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992–1005.

    Article  PubMed  CAS  Google Scholar 

  41. Amiri A, Chen Y, Teng CB, Naraghi M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 2020;25:731–9.

    Article  Google Scholar 

  42. Amiri A, Ahmadi G, Shanbedi M, Etemadi M, Zubir MNM, Chew B, et al. Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids. RSC Adv. 2016;6(107):105508–27.

    Article  CAS  Google Scholar 

  43. Sarsam WS, Amiri A, Kazi S, Badarudin A. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers Manag. 2016;116:101–11.

    Article  CAS  Google Scholar 

  44. Shanbedi M, Amiri A, Heris SZ, Eshghi H, Yarmand H. Effect of magnetic field on thermo-physical and hydrodynamic properties of different metals-decorated multi-walled carbon nanotubes-based water coolants in a closed conduit. J Therm Anal Calorim. 2018;131(2):1089–106.

    Article  CAS  Google Scholar 

  45. Arzani HK, Amiri A, Arzani HK, Rozali SB, Kazi S, Badarudin A. Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets. J Therm Anal Calorim. 2016;126(3):1427–36.

    Article  CAS  Google Scholar 

  46. Rafieerad A, Bushroa A, Nasiri-Tabrizi B, Kaboli S, Khanahmadi S, Amiri A, et al. Toward improved mechanical, tribological, corrosion and in vitro bioactivity properties of mixed oxide nanotubes on Ti–6Al–7Nb implant using multi-objective PSO. J Mech Behav Biomed Mater. 2017;69:1–18.

    Article  PubMed  CAS  Google Scholar 

  47. Rafieerad A, Bushroa A, Nasiri-Tabrizi B, Baradaran S, Amiri A, Saber-Samandari S, et al. Simultaneous enhanced antibacterial and osteoblast cytocompatibility performance of Ti6Al7Nb implant by nano-silver/graphene oxide decorated mixed oxide nanotube composite. Surf Coat Technol. 2019;360:181–95.

    Article  CAS  Google Scholar 

  48. Rafieerad AR, Bushroa AR, Amiri A, Kalaiselvam K, Vellasamy KM, Vadivelu J. Antibacterial biocompatible arginine functionalized mono-layer graphene: no more risk of silver toxicity. J Hazard Mater. 2018;360:132–40.

    Article  PubMed  CAS  Google Scholar 

  49. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46(6):833–40.

    Article  CAS  Google Scholar 

  50. Mirbagheri MH, Akbari M, Mehmandoust B. Proposing a new experimental correlation for thermal conductivity of nanofluids containing of functionalized multiwalled carbon nanotubes suspended in a binary base fluid. Int Commun Heat Mass Transf. 2018;98:216–22.

    Article  CAS  Google Scholar 

  51. Cabaleiro D, Colla L, Barison S, Lugo L, Fedele L, Bobbo S. Heat transfer capability of (ethylene glycol + water)-based nanofluids containing graphene nanoplatelets: design and thermophysical profile. Nanoscale Res Lett. 2017;12(1):1–11.

    Article  CAS  Google Scholar 

  52. Preziosi V, Barra M, Perazzo A, Tarabella G, Romeo A, Marasso S, et al. Monitoring emulsion microstructure by using organic electrochemical transistors. J Mater Chem C. 2017;5(8):2056–65.

    Article  CAS  Google Scholar 

  53. Golnabi H, Matloob M, Bahar M, Sharifian M. Investigation of electrical conductivity of different water liquids and electrolyte solutions. 2009.

  54. Zawrah M, Khattab R, Girgis L, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016;12(3):227–34.

    Article  Google Scholar 

  55. Amiri A, Shanbedi M, Chew B, Kazi S, Solangi K. Toward improved engine performance with crumpled nitrogen-doped graphene based water–ethylene glycol coolant. Chem Eng J. 2016;289:583–95.

    Article  CAS  Google Scholar 

  56. Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNBM, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9(1):15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hwang Y-j, Lee J, Lee C, Jung Y, Cheong S, Lee C, et al. Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta. 2007;455(1–2):70–4.

    Article  CAS  Google Scholar 

  58. Mäntele W, Deniz E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Amsterdam: Elsevier; 2017.

    Google Scholar 

  59. Hadadian M, Goharshadi EK, Youssefi A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanopart Res. 2014;16(12):2788.

    Article  CAS  Google Scholar 

  60. Minea AA, Manca O, Moldoveanu MG, editors. FOM comparison on Al2O3, CuO and TiO2 water based nanofluids in laminar and turbulent flow. ASME-ATI-UIT 2015 Conference on Thermal Energy Systems: Production, Storage, Utilization and the Environment; 2015: Enzo Albano Editore.

  61. Yu W, France DM, Smith DS, Singh D, Timofeeva EV, Routbort JL. Heat transfer to a silicon carbide/water nanofluid. Int J Heat Mass Transf. 2009;52(15–16):3606–12.

    Article  CAS  Google Scholar 

  62. Jiang W, Wang L. Multifunctional nanofluids: synthesis, aggregation and thermal conductivity. Current Nanosci. 2011;7(3):480–8.

    Article  CAS  Google Scholar 

  63. Vafaei S, editor. BEHAVIOR OF GOLD NANOFLUID TRIPLE LINE. ASTFE Digital Library; 2019: Begel House Inc.

Download references

Acknowledgements

We acknowledge The Islamic Azad University Khomeinishahr Branch, Iran, to conduct and support this project. This study thanks to the Canadian Institute of Health Research, University of Malaya, and VCN Company. We also thank Dr. Ahmad Amiri for his direction in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Mehmandoust.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieerad, M., Rafieerad, A.R., Mehmandoust, B. et al. New water-based fluorescent nanofluid containing 2D titanium carbide MXene sheets: a comparative study of its thermophysical, electrical and optical properties with amine and carboxyl covalently functionalized graphene nanoplatelets. J Therm Anal Calorim 146, 1491–1504 (2021). https://doi.org/10.1007/s10973-020-10088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10088-0

Keywords

Navigation