Abstract
Magnetic nanoparticles (MNPs)-induced hyperthermia is capable of heating the tumor without side effects. In this technique, the tumor temperature is elevated to 41–43 °C from a normal temperature of 37 °C of the body. The Pennes' bio-heat transfer equation is widely used to transfer heat in living organs with blood perfusion rate. The elevated temperature destroys cancer cells and keeps normal cells harmless. This state-of-the-art review describes the basic physical mechanisms behind this treatment modality and recent advances in the mathematical modeling approach toward this therapy. Firstly, we throw light on different MNPs applicable in hyperthermia, heat generation mechanism, basic parameters affecting the efficiency of heating, thermophysical properties of MNPs, in vivo studies, and clinical studies. Secondly, we have discussed in detail the mathematical modeling of hyperthermia including analytical solutions, computational modeling, and prominent optimization techniques applied in thermotherapy. We shortly discuss hyperthermia integrated with chemotherapy, laser therapy, radiotherapy, and immunotherapy. In the end, we narrate some major challenges and opportunities for hyperthermia and discussed future directions.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Society AC. Global cancer facts & figures. American Cancer Society Atlanta; 2011.
Cancer IAfRo. IARC: outdoor air pollution a leading environmental cause of cancer deaths: International Agency for Research on Cancer; 2011.
EJ H. Physical and biologic basis of radiation therapy. Moss’ Radiat Oncol Ration Tech Res. 1994:3–66.
Dewey W, Hopwood L, Sapareto S, Gerweck L. Cellular responses to combinations of hyperthermia and radiation. Radiology. 1977;123:463–74.
Overgaard J. Hyperthermic oncology 1984: summary papers. London: Taylor & Francis; 1984.
Christophi C, Winkworth A, Muralihdaran V, Evans P. The treatment of malignancy by hyperthermia. Surg Oncol. 1998;7:83–90.
Fagnoni FF, Zerbini A, Pelosi G, Missale G. Combination of radiofrequency ablation and immunotherapy. Front Biosci. 2008;13:369–81.
Goldstein L, Dewhirst M, Repacholi M, Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int J Hyperth. 2003;19:373–84.
Habash RW, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006;34:491–542.
Robins HI, Woods JP, Schmitt CL, Cohen JD. A new technological approach to radiant heat whole body hyperthermia. Cancer Lett. 1994;79:137–45.
Nielsen OS, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment? Eur J Cancer. 2001;37:1587–9.
Lin JC, Wang Y-J. Interstitial microwave antennas for thermal therapy. Int J Hyperth. 1987;3:37–47.
Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011;6:1342–7.
van der Zee J, González D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. The Lancet. 2000;355:1119–25.
Overgaard J, Bentzen S, Gonzalez DG, Hulshof M, Arcangeli G, Dahl O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. The Lancet. 1995;345:540–3.
Group ICH, Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 1996;35:731–44.
Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem B-C, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–70.
Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 2011;107:912–8.
Dennis C, Jackson A, Borchers J, Ivkov R, Foreman A, Hoopes P, et al. The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. J Phys D Appl Phys. 2008;41:134020.
Kawai N, Futakuchi M, Yoshida T, Ito A, Sato S, Naiki T, et al. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. Prostate. 2008;68:784–92.
Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321:1493–6.
Lévy M, Wilhelm C, Siaugue J-M, Horner O, Bacri J-C, Gazeau F. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J Phys: Condens Matter. 2008;20:204133.
Blonska-Tabero A, Bosacka M, Filipek E, Piz M, Kochmanski P. High-temperature synthesis and unknown properties of M3Cr4 (PO4)6, where M = Zn or Mg and a new solid solution Zn 1.5 Mg 1.5 Cr 4 (PO 4) 6. J Therm Anal Calorim 2019:1–7.
Kim D-H, Lee S-H, Kim K-N, Kim K-M, Shim I-B, Lee Y-K. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application. J Magn Magn Mater. 2005;293:320–7.
Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn. 1998;34:3745–54.
Koch CM, Winfrey AL. FEM optimization of energy density in tumor hyperthermia using time-dependent magnetic nanoparticle power dissipation. IEEE Trans Magn. 2014;50:1–7.
Pankhurst QA, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167.
Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep. 2013;3:2887.
Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R198.
Wang X, Gu H, Yang Z. The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater. 2005;293:334–40.
Habib A, Ondeck C, Chaudhary P, Bockstaller M, McHenry M. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys. 2008;103:07A307.
Kappiyoor R, Liangruksa M, Ganguly R, Puri IK. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. J Appl Phys. 2010;108:094702.
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50.
Obaidat I, Issa B, Haik Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials. 2015;5:63–89.
Bergs JW, Wacker MG, Hehlgans S, Piiper A, Multhoff G, Roedel C, et al. The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta BBA Rev Cancer. 2015;1856:130–43.
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.
Hilger I, Rapp A, Greulich K-O, Kaiser WA. Assessment of DNA damage in target tumor cells after thermoablation in mice. Radiology. 2005;237:500–6.
van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann K-T, Gneveckow U, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials. 2009;30:52–7.
Ng EYK, Kumar SD. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed Eng Online. 2017;16:36.
Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.
Datta N, Krishnan S, Speiser D, Neufeld E, Kuster N, Bodis S, et al. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano) bullet” for cancer theranostics? Cancer Treat Rev. 2016;50:217–27.
Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperth. 2013;29:790–800.
Kneller E. Theory of the magnetization curve of small crystals. Encycl Phys. 1966;18:2.
Wang Z, Mao N, Jiang F. Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries. J Therm Anal Calorim. 2019;140:1–15.
Leszczyński J, Mizera A, Nieroda J, Nieroda P, Drożdż E, Sitarz M, et al. Application of TPO/TPR methods in oxidation investigations of CoSb3 and Mg2 Si thermoelectrics with and without a protective coating of “black glass”. J Therm Anal Calorim. 2019;140:1–10.
Néel L. Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh. J Phys Radium. 1950;11:49–61.
Brown WF Jr. Thermal fluctuations of a single-domain particle. Phys Rev. 1963;130:1677.
Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.
Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.
Haines P, Reading M, Wilburn F. Differential thermal analysis and differential scanning calorimetry. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 1998. p. 279–361.
Khachani M, El Hamidi A, Halim M, Arsalane S. Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca (OH)2. J Mater Environ Sci. 2014;5:615–24.
Silva AC, Oliveira TR, Mamani JB, Malheiros SM, Malavolta L, Pavon LF, et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed. 2011;6:591.
Brezovich IA. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med Phys Monogr. 1988;16:82–111.
Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Gougeon M, et al. Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater. 2010;322:L49–52.
Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, et al. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2007;81:12–22.
Ito A, Nakahara Y, Tanaka K, Kuga Y, Honda H, Kobayashi T. Time course of biodistribution and heat generation of magnetite cationic liposomes in mouse model. Therm Med (Jpn J Hypertherm Oncol). 2003;19:151–9.
Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldoefner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles-preliminary experience with a new interstitial technique. 2005.
Kawai N, Ito A, Nakahara Y, Honda H, Kobayashi T, Futakuchi M, et al. Complete regression of experimental prostate cancer in nude mice by repeated hyperthermia using magnetite cationic liposomes and a newly developed solenoid containing a ferrite core. Prostate. 2006;66:718–27.
Wust P, Gneveckow U, Wust P, Gneveckow U, Johannsen M, Böhmer D, et al. Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int J Hyperth. 2006;22:673–85.
Rast L, Harrison JG. Computational modeling of electromagnetically induced heating of magnetic nanoparticle materials for hyperthermic cancer treatment. PIERS Online. 2010;6:690–4.
Candeo A, Dughiero F. Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles. IEEE Trans Magn. 2009;45:1658–61.
Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–91.
Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, et al. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS ONE. 2013;8:e57332.
Bellizzi G, Bucci OM, Chirico G. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. Int J Hyperth. 2016;32:688–703.
Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater. 2014;354:163–72.
Khandhar AP, Ferguson RM, Simon JA, Krishnan KM. Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys. 2012;111:07B306.
Bakoglidis K, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M. Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn. 2012;48:1320–3.
Gonzales-Weimuller M, Zeisberger M, Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321:1947–50.
Purushotham S, Ramanujan R. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys. 2010;107:114701.
Guimarães AP, Guimaraes AP. Principles of nanomagnetism. Berlin: Springer; 2009.
Berkowitz A, Lahut J, Jacobs I, Levinson LM, Forester D. Spin pinning at ferrite-organic interfaces. Phys Rev Lett. 1975;34:594.
Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, et al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 2014;35:6400–11.
Bødker F, Mørup S, Linderoth S. Surface effects in metallic iron nanoparticles. Phys Rev Lett. 1994;72:282.
Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology. 2005;16:1221.
Chen S, Chiang C-L, Hsieh S. Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications. J Magn Magn Mater. 2010;322:247–52.
Davari H, Goshayeshi HR, Öztop HF, Chaer I. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J Therm Anal Calorim 2019;140:1–10.
Petryk AA, Misra A, Mazur CM, Petryk JD, Hoopes PJ. Magnetic nanoparticle hyperthermia cancer treatment efficacy dependence on cellular and tissue level particle concentration and particle heating properties. Energy-based Treatment of Tissue and Assessment VIII: International Society for Optics and Photonics; 2015. p. 93260L.
Pavel M, Stancu A. Study of the optimum injection sites for a multiple metastases region in cancer therapy by using MFH. IEEE Trans Magn. 2009;45:4825–8.
Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70.
Nakhchi M, Esfahani J. Numerical investigation of turbulent CuO–water nanofluid inside heat exchanger enhanced with double V-cut twisted tapes. J Ther Anal Calorim. 2020;1–11.
Gautam RK, Seth D. Thermal conductivity of deep eutectic solvents. J Ther Anal Calorim. 2019;140:1–8.
Hamilton RL, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.
Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.
Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.
Jimbow K, Takada T, Sato M, Sato A, Kamiya T, Ono I, et al. Keynote-4 Melanin biology and translational research strategy; melanogenesis and nanomedicine as the basis for melanoma-targeted Dds and chemo-thermo-immunotherapy. Pigment Cell Melanoma Res. 2008;21:243–4.
Gordon R, Hines J, Gordon D. Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypoth. 1979;5:83–102.
LeBrun A, Joglekar T, Bieberich C, Ma R, Zhu L. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia. Int J Hyperth. 2016;32:132–43.
Kong G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Can Res. 2001;61:3027–32.
Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, et al. A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer. 2010;10:119.
Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, et al. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics. 2012;2:113.
Verde EL, Landi GT, Gomes JDA, Sousa MH, Bakuzis AF. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys. 2012;111:123902.
Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78:7–14.
Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperth. 1997;13:587–605.
Shinkai M, Ueda K, Ohtsu S, Honda H, Kohri K, Kobayashi T. Effect of functional magnetic particles on radiofrequency capacitive heating: an in vivo study. Jpn J Cancer Res. 2002;93:103–8.
Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J Cancer Res. 1998;89:463–70.
Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7:169–83.
Salloum M, Ma R, Zhu L. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int J Hyperth. 2008;24:589–601.
Kabashin A, Tamarov K, Ryabchikov YV, Osminkina L, Zinovyev S, Kargina J, et al. Si nanoparticles as sensitizers for radio frequency-induced cancer hyperthermia. Synthesis and Photonics of Nanoscale Materials XIII: International Society for Optics and Photonics; 2016. p. 97370A.
Brusentsov NA, Nikitin LV, Brusentsova TN, Kuznetsov AA, Bayburtskiy FS, Shumakov LI, et al. Magnetic fluid hyperthermia of the mouse experimental tumor. J Magn Magn Mater. 2002;252:378–80.
Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA. Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn Reson Imaging. 2011;29:272–80.
Shinkai M, Yanase M, Suzuki M, Honda H, Wakabayashi T, Yoshida J, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater. 1999;194:176–84.
Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperth. 2007;23:315–23.
Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103:317–24.
Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth. 2010;26:790–5.
Mahmoudi K, Hadjipanayis CG. The application of magnetic nanoparticles for the treatment of brain tumors. Frontiers in chemistry. 2014;2:109.
Patterson J, Strang R. The role of blood flow in hyperthermia. Int J Radiat Oncol Biol Phys. 1979;5:235–41.
Miaskowski A, Sawicki B. Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model. IEEE Trans Biomed Eng. 2013;60:1806–13.
Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1:93–122.
Wulff W. The energy conservation equation for living tissue. IEEE Trans Biomed Eng. 1974;BME-21:494–5.
Chen MM, Holmes KR. Microvascular contributions in tissue heat transfer. Ann N Y Acad Sci. 1980;335:137–50.
Jiji L, Weinbaum S, Lemons D. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—part II: model formulation and solution. J Biomech Eng. 1984;106:331–41.
Weinbaum S, Jiji L. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. ASME J Biomech Eng. 1985;107:131–9.
Balidemaj E, Kok HP, Schooneveldt G, van Lier AL, Remis RF, Stalpers LJ, et al. Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired in vivo with EPT at 3 T MRI. Int J Hyperth. 2016;32:558–68.
Deuflhard P, Seebass M, Stalling D, Beck R. Hege H-C. Hyperthermia treatment planning in clinical cancer therapy: modelling, simulation and visualization. ZIB-Report, 1997;3:9–17.
Nguyen PT, Abbosh A, Crozier S. Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization. IEEE Trans Biomed Eng. 2017;64:1335–44.
Arkin H, Xu L, Holmes K. Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng. 1994;41:97–107.
Baish J, Ayyaswamy P, Foster K. Heat transport mechanisms in vascular tissues: a model comparison. J Biomech Eng. 1986;108:324–31.
Charny C, Levin R. Bioheat transfer in a branching countercurrent network during hyperthermia. J Biomech Eng. 1989;111:263–70.
Wissler E. Comments on the new bioheat equation proposed by Weinbaum and Jiji. J Biomech Eng. 1987;109:226.
Jamil M, Ng EY-K. To optimize the efficacy of bioheat transfer in capacitive hyperthermia: a physical perspective. J Therm Biol. 2013;38:272–9.
Tzou D. Transfer M-tMH. Washington, DC: Taylor & Francis; 1997. p. 138–46.
Rubio MFJC, Hernández AV, Salas LL. High temperature hyperthermia in breast cancer treatment. Istanbul: Hyperthermia: IntechOpen; 2013.
Majchrzak E, Turchan Ł. Numerical analysis of tissue heating using the bioheat transfer porous model. Comput Assist Methods Eng Sci. 2017;20:123–31.
Gilchrist R, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957;146:596.
Kobayashi T, Kakimi K, Nakayama E, Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine. 2014;9:1715–26.
LeBrun A, Manuchehrabadi N, Attaluri A, Wang F, Ma R, Zhu L. MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia. Int J Hyperth. 2013;29:730–8.
LeBrun A, Ma R, Zhu L. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. J Therm Biol. 2016;62:129–37.
Eagle S, Wadsworth S, Wnorowski A. Modeling an injection profile of nanoparticles to optimize tumor treatment time with magnetic hyperthermia. BEE 4530-2015 (Student paper) 2015.
Sankar S, Zhang M. Optimization of combined radiation and gold nanoparticle hyperthermia therapy for treating cutaneous squamous carcinoma. BEE 4530-2015 (Student paper) 2015.
Hainfeld JF, Lin L, Slatkin DN, Dilmanian FA, Vadas TM, Smilowitz HM. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomed Nanotechnol Biol Med. 2014;10:1609–17.
Kim B, Han G, Toley BJ, Kim C-K, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol. 2010;5:465.
Javidi M, Heydari M, Karimi A, Haghpanahi M, Navidbakhsh M, Razmkon A. Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy. J Biomed Phys Eng. 2014;4:151.
Salloum M, Ma R, Zhu L. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int J Hyperth. 2009;25:309–21.
Hall M, Yanga D, Yi K, Zhou J. Optimized injection site location for magnetic nanoparticle induced hyperthermia cancer treatment. BEE 4530-2012 (Student paper) 2012.
Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, et al. Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews. 2015;2:041302.
Liangruksa M, Ganguly R, Puri IK. Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion. J Magn Magn Mater. 2011;323:708–16.
Maenosono S, Saita S. Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans Magn. 2006;42:1638–42.
Liu K-C, Chen H-T. Analysis for the dual-phase-lag bio-heat transfer during magnetic hyperthermia treatment. Int J Heat Mass Transf. 2009;52:1185–92.
Wu J, Ma X, Wang Y. Hyperthermia cancer therapy by magnetic nanoparticles. BENG 221, 2013 (Student paper) 2013.
Feng Y, Rylander M, Bass J, Oden J, Diller K. Optimal design of laser surgery for cancer treatment through nanoparticle-mediated hyperthermia therapy. NSTI-Nanotech2005. pp. 39–42.
Pearce JA, Petyk AA, Hoopes PJ. FEM numerical model analysis of magnetic nanoparticle tumor heating experiments. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society: IEEE; 2014. pp. 5312–5.
Bhowmick S, Coad J, Swanlund D, Bischof J. In vitro thermal therapy of AT-1 dunning prostate tumours. Int J Hyperth. 2004;20:73–92.
Huang H-C, Rege K, Heys JJ. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano. 2010;4:2892–900.
Moritz AR, Henriques F Jr. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol. 1947;23:695.
Elliott A, Schwartz J, Wang J, Shetty A, Hazle J, Stafford JR. Analytical solution to heat equation with magnetic resonance experimental verification for nanoshell enhanced thermal therapy. Lasers Surg Med Off J Am Soc Laser Med Surg. 2008;40:660–5.
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol. 2006;82:412–7.
Xu R, Zhang Y, Ma M, Xia J, Liu J, Guo Q, et al. Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the maghemite-gelled model. IEEE Trans Magn. 2007;43:1078–85.
Nabil M, Zunino P. A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R Soc Open Sci. 2016;3:160287.
Nabil M, Decuzzi P, Zunino P. Modelling mass and heat transfer in nano-based cancer hyperthermia. R Soc Open Sci. 2015;2:150447.
Pearce J, Giustini A, Stigliano R, Hoopes PJ. Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures. J Nanotechnol Eng Med. 2013;4:011005.
Sulman MM, Miller DF, Kozlowski G. Nonlinear model for magnetic nanoparticle-based hyperthermia. Int J Math Modell Numer Optim. 2015;6:223–34.
Wang H, Wu J, Zhuo Z, Tang J. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia. Technol Health Care. 2016;24:S827–39.
Andrä W, d’Ambly C, Hergt R, Hilger I, Kaiser W. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater. 1999;194:197–203.
Sawyer CA, Habib AH, Miller K, Collier KN, Ondeck CL, McHenry ME. Modeling of temperature profile during magnetic thermotherapy for cancer treatment. J Appl Phys. 2009;105:07B320.
Bagaria H, Johnson D. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. Int J Hyperth. 2005;21:57–75.
Durkee J Jr, Antich P, Lee C. Exact solutions to the multiregion time-dependent bioheat equation I: solution development. Phys Med Biol. 1990;35:847.
Di Michele F, Pizzichelli G, Mazzolai B, Sinibaldi E. On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids. Math Biosci. 2015;262:105–16.
Hayat T, Ahmed B, Abbasi F, Ahmad B. Mixed convective peristaltic flow of carbon nanotubes submerged in water using different thermal conductivity models. Comput Methods Programs Biomed. 2016;135:141–50.
Hayat T, Ahmed B, Alsaedi A, Abbasi F. Numerical study for peristalsis of Carreau–Yasuda nanomaterial with convective and zero mass flux condition. Res Phys. 2018;8:1168–77.
Ahmed B, Hayat T, Alsaedi A, Abbasi F. Entropy generation analysis for peristaltic motion of Carreau–Yasuda nanomaterial. Phys Scr. 2020;95:055804.
Hayat T, Ahmed B, Abbasi F, Alsaedi A. Flow of carbon nanotubes submerged in water through a channel with wavy walls with convective boundary conditions. Colloid Polym Sci. 2017;295:1905–14.
Hayat T, Ahmed B, Abbasi F, Alsaedi A. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J Mol Liq. 2017;234:324–9.
Hayat T, Ahmed B, Abbasi F, Alsaedi A. Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects. J Cent S Univers. 2019;26:2543–53.
Hayat T, Ahmed B, Abbasi F, Alsaedi A. Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.
Khan MI, Qayyum S, Hayat T, Khan MI, Alsaedi A, Khan TA. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys Lett A. 2018;382:2017–26.
Kaddi CD, Phan JH, Wang MD. Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy. Nanomedicine. 2013;8:1323–33.
Loulou T, Scott EP. Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method. Numer Heat Transf Part A Appl. 2002;42:661–83.
Pearce JA, Cook JR, Hoopes PJ, Giustini A. FEM numerical model study of heating in magnetic nanoparticles. Energy-based Treatment of Tissue and Assessment VI: International Society for Optics and Photonics; 2011. pp. 79010B
Pavel M, Stancu A. Ferromagnetic nanoparticles dose based on tumor size in magnetic fluid hyperthermia cancer therapy. IEEE Trans Magn. 2009;45:5251–4.
Jeyadevan B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn. 2010;118:391–401.
Yue K, Yu C, Lei Q, Luo Y, Zhang X. Numerical simulation of effect of vessel bifurcation on heat transfer in the magnetic fluid hyperthermia. Appl Therm Eng. 2014;69:11–8.
Sawicki B, Miaskowski A. Nonlinear higher-order transient solver for magnetic fluid hyperthermia. J Comput Appl Math. 2014;270:143–51.
Chen Z, Miller W, Roemer R, Cetas T. Errors between two-and three-dimensional thermal model predictions of hyperthermia treatments. Int J Hyperth. 1990;6:175–91.
Craciun V, Calugaru G, Badescu V. Accelerated simulation of heat transfer in magnetic fluid hyperthermia. Czech J Phys. 2002;52:725–8.
Zhang C, Johnson DT, Brazel CS. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles. IEEE Trans Nanobiosci. 2008;7:267–75.
Paruch M. Hyperthermia process control induced by the electric field in order to cancer destroying. Acta Bioeng Biomech. 2014;16:123–30.
Sawicki B, Miaskowski A. Numerical model of magnetic fluid hyperthermia. Przeglad Elektrotechniczny. 2013;89:86–8.
Majchrzak E, Paruch M. Numerical modelling of the cancer destruction during hyperthermia treatment. In: 19th international conference on computer methods in mechanics CMM-2011, Warsaw, Poland, Short Papers2001. pp. 333–4.
Gooneratne CP, Kurnicki A, Yamada S, Mukhopadhyay SC, Kosel J. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe. PLoS ONE. 2013;8:e81227.
Reis RF, dos Santos Loureiro F, Lobosco M. 3D numerical simulations on GPUs of hyperthermia with nanoparticles by a nonlinear bioheat model. J Comput Appl Math. 2016;295:35–47.
Rodrigues DB, Hurwitz MD, Maccarini PF, Stauffer PR. Optimization of chest wall hyperthermia treatment using a virtual human chest model. In: 2015 9th European conference on antennas and propagation (EuCAP): IEEE; 2015. pp. 1–5.
Mital M, Tafreshi HV. A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment. Int J Numer Methods Biomed Eng. 2012;28:205–13.
Faktorová D, Pápežová M. Optimization of mild microwave hyperthermia interconnection with targeted delivery of nanoparticles. Przegląd Elektrotechniczny. 2014;90:117–9.
Tsuda N, Kuroda K, Suzuki Y. An inverse method to optimize heating conditions in RF-capacitive hyperthermia. IEEE Trans Biomed Eng. 1996;43:1029–37.
Di Barba P, Dughiero F, Sieni E. Field synthesis for the optimal treatment planning in magnetic fluid hyperthermia. Arch Electr Eng. 2012;61:57–67.
Wolf M, Rath K, Ruiz AER, Kühnicke E. Ultrasound thermometry for optimizing heat supply during a hyperthermia therapy of cancer tissue. Phys Proc. 2015;70:888–91.
Hu G, Li Y, Yang S, Bai Y, Huang J. Temperature field optimization and magnetic nanoparticles optimal approximation of MFH for cancer therapy. IEEE Trans Magn. 2015;51:1–4.
Lalonde RJ, Hunt JW. Optimizing ultrasound focus distributions for hyperthermia. IEEE Trans Biomed Eng. 1995;42:981–90.
Hassan S, Yoon J. Nano carriers based targeted drug delivery path planning using hybrid particle swarm optimizer and artificial magnetic fields. In: 2012 12th international conference on control, automation and systems: IEEE; 2012. pp. 1700–5.
Nguyen PT. Focusing microwave hyperthermia in realistic environment for breast cancer treatment: Ph.D. Thesis, University of Queensland; 2015.
Jagt TZ. Improving the tumor coverage by dynamic steering in Hyperthermia. Part of collection (Student paper) 2011.
Siauve N, Nicolas L, Vollaire C, Nicolas A, Vasconcelos JA. Optimization of 3-D SAR distribution in local RF hyperthermia. IEEE Trans Magn. 2004;40:1264–7.
Aldhaeebi M, Alzabidi M, Elshafiey I. Genetic algorithm optimization of SAR distribution in hyperthermia treatment of human head. In: 2013 1st international conference on artificial intelligence, modelling and simulation: IEEE; 2013. pp. 92–7.
Nizam-Uddin N, Elshafiey I. Enhanced energy localization in hyperthermia treatment based on hybrid electromagnetic and ultrasonic system: proof of concept with numerical simulations. BioMed Res Int 2017;2017.
Chakraborty A, Neogi K, Banerjee A, Sadhu PK. Switching frequency optimization in Hyperthermia treatment using BSD 2000. In: 2015 international conference on energy, power and environment: towards sustainable growth (ICEPE): IEEE; 2015. pp. 1–8.
Rylander MN, Feng Y, Bass J, Diller KR. Heat shock protein expression and injury optimization for laser therapy design. Lasers Surg Med Off J Am Soc Laser Med Surg. 2007;39:731–46.
Gayzik FS, Scott EP, Loulou T. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments. J Biomech Eng. 2006;128:505–15.
Fenn AJ, King GA. Adaptive radiofrequency hyperthermia-phased array system for improved cancer therapy: phantom target measurements. Int J Hyperth. 1994;10:189–208.
Schenk O, Manguoglu M, Sameh A, Christen M, Sathe M. Parallel scalable PDE-constrained optimization: antenna identification in hyperthermia cancer treatment planning. Comput Sci Res Dev. 2009;23:177–83.
Liontas CA, Knott P. An Alternating Projections Algorithm for optimizing electromagnetic fields in regional hyperthermia. In: 2016 10th European conference on antennas and propagation (EuCAP): IEEE; 2016. pp. 1–5.
Canters RR. Optimization and control in deep hyperthermia: clinical implementation of hyperthermia treatment planning in cervical cancer treatment to obtain a higher treatment quality. 2013.
Dewhirst M. Thermal dosimetry: thermo-radiotherapy and thermochemotherapy. Berlin: Springer; 1995.
Klemmer T, Hoydick D, Okumura H, Zhang B, Soffa W. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr Metall Mater. 1995;33:1793–805.
Pankhurst Q, Thanh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2009;42:224001.
Inomata K, Sawa T, Hashimoto S. Effect of large boron additions to magnetically hard Fe-Pt alloys. J Appl Phys. 1988;64:2537–40.
Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–35.
Vassiliou JK, Mehrotra V, Russell MW, Giannelis EP, McMichael R, Shull R, et al. Magnetic and optical properties of γ-Fe2O3 nanocrystals. J Appl Phys. 1993;73:5109–16.
Sato T, Iijima T, Seki M, Inagaki N. Magnetic properties of ultrafine ferrite particles. J Magn Magn Mater. 1987;65:252–6.
Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. 2003;94:308–13.
Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG, et al. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt. 2009;14:021016.
Guibert C, Dupuis V, Peyre V, Fresnais J. Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C. 2015;119:28148–54.
Jiang P-S, Tsai H-Y, Drake P, Wang F-N, Chiang C-S. Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation. Int J Hyperth. 2017;33:770–8.
Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int J Hyperth. 2013;29:819–27.
Sturesson C, Andersson-Engels S. A mathematical model for predicting the temperature distribution in laser-induced hyperthermia Experimental evaluation and applications. Phys Med Biol. 1995;40:2037.
Cheng L, Yang K, Chen Q, Liu Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano. 2012;6:5605–13.
Xu X, Meade A, Bayazitoglu Y. Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments. Lasers Med Sci. 2011;26:213–22.
Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale. 2015;7:12728–36.
Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, et al. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res. 2014;31:3274–88.
Bauer LM, Situ SF, Griswold MA, Samia ACS. Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett. 2015;6:2509–17.
Krishnan KM. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn. 2010;46:2523–58.
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.
Acknowledgements
We acknowledge all the reviewers for their useful comments to improve this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing financial interests of personal relationships that could appear to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Suleman, M., Riaz, S. & Jalil, R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J Therm Anal Calorim 146, 1193–1219 (2021). https://doi.org/10.1007/s10973-020-10080-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-020-10080-8