Skip to main content
Log in

Preparation and thermal degradation property analysis of the tea-based melamine-modified urea–formaldehyde (TMUF) resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, tea powder was used as a filler to produce low-formaldehyde-emission tea-based melamine-modified urea–formaldehyde resin (TMUF). The thermal stabilities of TMUF and the resin without tea powder (MUF0) were characterized using thermogravimetry. The optimal amount of tea powder m(tea)/m(tea + urea) was equal to 0.15. The formaldehyde emission of the three-layer plywood produced by TMUF was reduced by 75.43%, and the wet bonding strength of the plate was increased by 26.67% as compared with the plywood prepared by MUF0. Compared with MUF0, the thermal degradation peak temperature of TMUF resin was shifted to higher temperature, while the carbon residue was increased. The thermal degradation activation energies of TMUF and MUF0 were similar, while TMUF had a lower pre-exponential A. The Flynn–Wall–Ozawa model-free method is used to estimate various activation energy values at different conversion rates and to predict possible reaction mechanisms. Judging the reaction mechanism according to the slope of the straight line fitted by different models, the best model was based on random nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stefan P, van Hendrikus HWG, Veigel S, Wolfgang GA, Martin R. Urea–formaldehyde microspheres as a potential additive to wood adhesive. J Wood Sci. 2018;64(4):390–7.

    Article  Google Scholar 

  2. Gao Q, Liu C, Luo JL, Li XN, Chen L, Wang W, Li JZ. Effects of resin open time and melamine addition on cold pre-pressing performance of a urea–formaldehyde resin. Eur J Wood Wood Prod. 2018;76(4):1253–61.

    Article  CAS  Google Scholar 

  3. Younesi KH, Kazemi NS, Eshkiki RB, Pizzi A. Improving urea formaldehyde resin properties by glyoxalated soda bagasse lignin. Eur J Wood Wood Prod. 2015;73(1):77–85.

    Article  Google Scholar 

  4. Boran S, Usta M, Kaya EG. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. Int J Adhes Adhes. 2011;31(7):674–8.

    Article  CAS  Google Scholar 

  5. Ghani A, Ashaari Z, Bawon P, Seng HL. Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger. Build Environ. 2018;142:188–94.

    Article  Google Scholar 

  6. Hillis WE, Urbach G. The reaction of (+)-catechin with formaldehyde. J Chem Technol Biot. 1959;9(9):474–82.

    CAS  Google Scholar 

  7. Takagaki A, Fukai K, Nanjo F, Hara Y. Reactivity of green tea catechins with formaldehyde. J Wood Sci. 2000;46(4):334–8.

    Article  CAS  Google Scholar 

  8. Liu L, Jun QI, Zhu Y, Jing Y, Zhang Q, Division P. Optimization of Ultrafine Pulverization Technology in Chaige Tuire Powder. China Pharm. 2017;28(13):1837–41.

    Google Scholar 

  9. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol. 2011;102(10):6230–8.

    Article  CAS  Google Scholar 

  10. Huang X, Hoop CFD, Xie J, Hse CY, Feng L. Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis. J Therm Anal Calorim. 2017;131(2):1911–8.

    Article  Google Scholar 

  11. Findorák R, Fröhlichová M, Legemza J. Thermal degradation and kinetic study of sawdusts and walnut shells via thermal analysis. J Therm Anal Calorim. 2016;125(2):689–94.

    Article  Google Scholar 

  12. Chen YZ, Fan DB, Qin TF, Chu FX. Thermal degradation and stability of accelerated-curing phenol-formaldehyde resin. BioResources. 2014;9:4063–5075.

    Google Scholar 

  13. Gupta GK, Mondal MK. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. J Therm Anal Calorim. 2019;137(4):1431–41.

    Article  CAS  Google Scholar 

  14. Wang K, Deng J, Zhang YN, Wang CP. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG–FTIR and in situ IR analysis. J Therm Anal Calorim. 2018;132(1):591–8.

    Article  CAS  Google Scholar 

  15. Marian E, Tita B, Tita IC, Jurca T, Vicas L. Thermal behaviour and kinetic study of amygdalin. J Therm Anal Calorim. 2018;134(1):765–72.

    Article  CAS  Google Scholar 

  16. Ren N, Zhang JJ. Research progress of thermal analysis kinetic data processing methods. Prog Chem. 2006;18(04):410–6.

    CAS  Google Scholar 

  17. Yoshida C, Okabe K, Yao T, Shiraishi N, Oya A. Preparation of carbon fibers from biomass-based phenol-formaldehyde resin. J Mater Sci. 2005;40(2):335–9.

    Article  CAS  Google Scholar 

  18. Takano T, Murakami T, Kamitakahara H, Nakatsubo F. Mechanism of formaldehyde adsorption of (+)-catechin. J Wood Sci. 2008;54(4):329–31.

    Article  CAS  Google Scholar 

  19. Siimer K, Kaljuvee T, Christjanson P, Pehk T. Changes in curing behaviour of aminoresins during storage. J Therm Anal Calorim. 2005;80(1):123–30.

    Article  CAS  Google Scholar 

  20. Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos KM, Chrissafis K. Urea–formaldehyde resins characterized by thermal analysis and FTIR method. J Therm Anal Calorim. 2008;92(1):29–33.

    Article  CAS  Google Scholar 

  21. Jiang X, Li C, Chi Y, Yan J. TG–FTIR study on urea–formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater. 2010;173(1–3):205–10.

    Article  CAS  Google Scholar 

  22. Chaala A, Yang J, Roy C. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis. Fuel. 2001;80(9):1245–58.

    Article  Google Scholar 

  23. Aouad A, Bilali L, Benchanâa M. Kinetic aspect of thermal decomposition of natural phosphate and its Kerogen. J Therm Anal Calorim. 2002;67(3):733–43.

    Article  CAS  Google Scholar 

  24. Yuan JJ, Tu JL, Xu YJ, Qin FGF, Wang CZ. Thermal stability and products chemical analysis of olive leaf extract after enzymolysis based on TG–FTIR and Py-GC–MS. J Therm Anal Calorim. 2018;132(3):1729–40.

    Article  CAS  Google Scholar 

  25. Rong L, Peng L, Ho C, Yan SH, Meurens M, Zhang ZZ, Li DX, Wan XC, Bao GH, Gao XL. Brewing and volatiles analysis of three tea beers indicate a potential interaction between tea components and lager yeast. Food Chem. 2016;197:161–7.

    Article  CAS  Google Scholar 

  26. Yang HP, Rong Y, Chen HP, Lee DH, Zheng CG. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.

    Article  CAS  Google Scholar 

  27. Carmienke S, Freitag MH, Pischon T, Schlattmann P, Fankhaenel T, Goebel H, Gensichen J. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101(12):4584–92.

    Article  Google Scholar 

  28. Wu YZ, Zhao Z, Li HB, He F. Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol. 2009;37(4):427–32.

    Article  CAS  Google Scholar 

  29. Zapata B, Balmaseda J, Fregoso-Israel E, Torres-Garcia E. Thermo-kinetics study of orange peel in air. J Therm Anal Calorim. 2009;98(1):309–15.

    Article  CAS  Google Scholar 

  30. Swain SN, Rao KK, Nayak PL. Biodegradable polymers: Part II. Thermal degradation of biodegradable plastics cross-linked from formaldehyde-soy protein concentrate. J Therm Anal Calorim. 2005;79(1):33–8.

    Article  CAS  Google Scholar 

  31. Alaba PA, Popoola SI, Abnisal F, Popoola SI, Abnisal F, Lee CS, Ohunakin OS, Adetiba E, Akanle MB, Abdul Patah MF, Atayero AA, Wan D, Wan MA. Thermal decomposition of rice husk: a comprehensive artificial intelligence predictive model. J Therm Anal Calorim. 2020;140(4):1811–23.

    Article  CAS  Google Scholar 

  32. Alvarez VA, Vazquez A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrade Stabil. 2004;84(1):13–21.

    Article  CAS  Google Scholar 

  33. Ornaghi HL, Ornaghi FG, Neves RM, Monticeli F, Bianchi O. Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose. 2020;27(9):4949–61.

    Article  CAS  Google Scholar 

  34. Zhang JJ, Ren N. A new kinetic method of processing TA data. Chin J Chem. 2004;22(12):1459–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the financial support from National College Student Innovation Training Program (04070272) and 2019 Research Interests Training (1911113222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Xiao, H., Chen, Y. et al. Preparation and thermal degradation property analysis of the tea-based melamine-modified urea–formaldehyde (TMUF) resin. J Therm Anal Calorim 146, 1845–1852 (2021). https://doi.org/10.1007/s10973-020-10079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10079-1

Keywords

Navigation