Skip to main content
Log in

Model for transient n-heptane droplet ignition at elevated pressure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work deals with transient droplet evaporation and ignition process of an isolated n-heptane droplet at high pressure. The vapor–liquid equilibrium has been described by Peng–Robinson equation of state. In present numerical model, the effects due to elevated pressure, inert species mixing in the liquid phase and thermo-physical properties are considered as variable. The evaporation model has been comprehensively validated with experimental results available in the literature. For the present investigation, the ambient pressure has been varied from \(5\) to \(80\;{\text{bar}}\) and at constant ambient temperature of \(1000\;{\text{K}}\). The range of diameter was varied from \(0.5\) to \(2.0\;{\text{mm}}\). The ignition delay was found to be strong functions of temperature, pressure and diameter. There is monotonic decrease in the ignition time due to increasing ambient temperature and pressure. At each pressure, there existed a minimum diameter below which ignition does not takes place and this minimum diameter decreases with increase in pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(c\) :

Constant pressure specific heat of gas

\(D_{\text{i}}\) :

Diffusion coefficient of species, \(i\)

\(d\) :

Diameter

\(d_{\text{o}}\) :

Initial diameter of droplet

\(d_{\text{i}}\) :

Instantaneous droplet diameter

\(E\) :

Activation energy

\(f\) :

Fugacity

\(h_{\text{f}}^{\text{o}}\) :

Standard heat of formation of species \(i\)

\(k\) :

Coefficient of thermal conductivity

\(k_{\text{ij}}\) :

Coefficient of binary interaction

\(L\) :

Latent heat of vaporization of mixture

\(m\) :

Mass

\(\dot{m}\) :

Mass flow rate

\(\dot{m}^{\prime\prime}\) :

Mass per unit area or heat flux

\(P\) :

Pressure

\(P_{\text{r}}\) :

Reduced pressure, \(\frac{P}{{P_{\text{c}} }}\)

\(r\) :

Radial distance

\(R_{\text{u}}\) :

Universal gas constant

\(R_{\text{o}}\) :

Initial droplet radius

\(R(t)\) :

Instantaneous droplet radius

\(t\) :

Time

\(T\) :

Temperature in gas phase

\(T_{\text{ad}}\) :

Adiabatic flame temperature

\(T_{\text{b}}\) :

Boiling temperature of liquid fuel

\(T_{\text{r}}\) :

Reduced temperature, \(\frac{T}{{T_{\text{c}} }}\)

\({\text{c}}\) :

At critical conditions

\({\text{s}}\) :

At drop surface

\(\infty\) :

At infinity

\({\text{F}}\) :

Flame

\({\text{f}}\) :

Fuel

\({\text{g}}\) :

Gaseous phase

\(i, j\) :

Species

\({\text{in}}\) :

Initial

\({\text{l}}\) :

Liq. phase

\({\text{O}}\) :

Oxidizer

\({\text{o}}\) :

At standard ambient conditions

\({\text{v}}\) :

Fuel vapor

\(+\) :

A non-dimensional quantity

\({\text{m}}\) :

A parameter in finite reaction equation with fuel

\({\text{n}}\) :

A parameter in finite reaction equation with oxidizer

\({\text{o}}\) :

At atmospheric pressure

\(\Delta \eta\) :

Non-dimensional grid size in gas phase

\(\phi\) :

Fugacity coefficient

\(\eta\) :

Transformed coordinate in gas phase

\(\kappa\) :

Frequency factor

\(\nu_{1}^{i}\) :

Stoichiometric coefficients of reactants

\(\nu_{2}^{i}\) :

Stoichiometric coefficients of products

\(\theta\) :

Temperature in liquid phase

\(\rho\) :

Density

\(\varTheta\) :

A non-dimensional number in reaction term

\(\dot{\omega }\) :

Reaction rate

\(\omega\) :

Acentric factor

\(\omega_{\text{m}}\) :

Acentric factor of mixture

References

  1. Faeth GM, Olson DR. The ignition of hydrocarbon fuel droplets in air. SAE Trans. 1968;77:1793–802.

    Google Scholar 

  2. Faeth GM, Dominicis DP, Tulpinsky JF, Olson DR. Supercritical bipropellant droplet combustion. In: Symposium on combustion, vol 12; 1969. p. 9–18.

  3. Kadota T, Hiroyasu H. Combustion of a fuel droplet in supercritical gaseous environments. In: Symposium on combustion, vol 18; 1981. p. 275–82.

  4. Tsukamoto T, Niioka T. Numerical simulation of fuel droplet evaporation and ignition under high temperature and high pressure. Prog Astronaut Aeronaut. 1993;152:263–279.

    CAS  Google Scholar 

  5. Chauveau C, Chesneau X, Gokalp I. Burning characteristics of n-heptane droplets under different regimes. In: 31st Aerospace sciences meeting. American Institute of Aeronautics and Astronautics; 1993. https://doi.org/10.2514/6.1993-824.

  6. Mikami M, Kono M, Sato J, Dietrich DL, Williams FA. Combustion of miscible binary-fuel droplets at high pressure under microgravity. Combust Sci Technol. 1993;90:111–23. https://doi.org/10.1080/00102209308907606.

    Article  CAS  Google Scholar 

  7. Mikami M, Habara O, Kono M, Sato J, Dietrich DL, Williams FA. Pressure effects in droplet combustion of miscible binary fuels. Combust Sci Technol. 1997;124:295–309. https://doi.org/10.1080/00102209708935649.

    Article  CAS  Google Scholar 

  8. Nakanishi R, Kobayashi H, Kato S, Niioka T. Ignition experiment of a fuel droplet in high-pressure high-temperature ambient. In: Symposium on combustion, vol 25; 1994. p. 447–53.

  9. Givler SD, Abraham J. Supercritical droplet vaporization and combustion studies. Prog Energy Combust Sci. 1996;22:1–28.

    Article  CAS  Google Scholar 

  10. Aggarwal SK. Single droplet ignition: theoretical analyses and experimental findings. Prog Energy Combust Sci. 2014;45:79–107.

    Article  Google Scholar 

  11. Raghavan V. Numerical modeling of evaporation and combustion of isolated liquid fuel droplets: a review. J Indian Inst Sci. 2019;99:5–23. https://doi.org/10.1007/s41745-019-0097-5.

    Article  Google Scholar 

  12. Vieille B, Chauveau C, Chesneau X, Odeïde A, Gökalp I. High-pressure droplet burning experiments in microgravity. In: Symposium on combustion, vol 26; 1996. p. 1259–65.

  13. Chauveau C, Gökalp I, Segawa D, Kadota T, Enomoto H. Effects of reduced gravity on methanol droplet combustion at high pressures. Proc Combust Inst. 2000;28:1071–7.

    Article  CAS  Google Scholar 

  14. Kadota T, Satoh K, Segawa D, Sato J, Marutani Y. Autoignition and combustion of a fuel droplet in supercritical gaseous environments under microgravity. In: Symposium on combustion, vol 27; 1998. p. 2595–601.

  15. Segawa D, Kadota T, Nakainkyo A, Hirota S, Enomoto H. Effects of ambient pressure on autoignition of a fuel droplet in supercritical and microgravity environment. Proc Combust Inst. 2000;28:1063–9.

    Article  CAS  Google Scholar 

  16. Fan X, Lu X. Numerical simulation of single droplet combustion characteristics in high temperature convection environment. In: IOP conference series: earth and environmental sciences, vol 267. IOP Publishing; 2019. p. 62050. https://doi.org/10.1088/1755-1315/267/6/062050.

  17. Giusti A, Sitte MP, Borghesi G, Mastorakos E. Numerical investigation of kerosene single droplet ignition at high-altitude relight conditions. Fuel. 2018;225:663–70.

    Article  CAS  Google Scholar 

  18. Ray S, Raghavan V, Gogos G. Two-phase transient simulations of evaporation characteristics of two-component liquid fuel droplets at high pressures. Int J Multiph Flow. 2019;111:294–309.

    Article  Google Scholar 

  19. Cho SY, Yetter RA, Dryer FL. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction. J Comput Phys. 1992;102:160–79.

    Article  CAS  Google Scholar 

  20. Kumar S, Ray A, Kale SR. A soot model for transient, spherically symmetric n-heptane droplet combustion. Combust Sci Technol. 2002;174:67–102. https://doi.org/10.1080/00102200290021380.

    Article  CAS  Google Scholar 

  21. Mawid M, Aggarwal SK. Analysis of dropwise ignition versus external ignition for dilute multicomponent fuel sprays. Combust Flame. 1990;81:59–72.

    Article  CAS  Google Scholar 

  22. Shuen JS, Yang V, Hsiao CC. Combustion of liquid-fuel droplets in supercritical conditions. Combust Flame. 1992;89:299–319.

    Article  CAS  Google Scholar 

  23. Saitoh T, Yamazaki K, Viskanta R. Effect of thermal radiation on transient combustion of a fuel droplet. J Thermophys Heat Transf. 1993;7:94–100. https://doi.org/10.2514/3.11575.

    Article  CAS  Google Scholar 

  24. Moran MJ, Shaprio HN. Fundamentals of engineering thermodynamics. 2018th ed. Newyork: Wiley; 2000.

    Google Scholar 

  25. Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. 4th ed. New York: McGraw-Hill; 1987.

    Google Scholar 

  26. Chung TH, Ajlan M, Lee LL, Starling KE. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind Eng Chem Res. 1988;27:671–9. https://doi.org/10.1021/ie00076a024.

    Article  CAS  Google Scholar 

  27. Neufeld PD, Janzen AR, Aziz RA. Empirical equations to calculate 16 of the transport collision integrals Ω(l, s)* for the Lennard–Jones (12–6) potential. J Chem Phys. 1972;57:1100–2. https://doi.org/10.1063/1.1678363.

    Article  CAS  Google Scholar 

  28. Takahashi S. Preparation of a generalized chart for the diffusion coefficients of gases at high pressures. J Chem Eng Jpn. 1975;7:417–20.

    Article  Google Scholar 

  29. Lee BI, Kesler MG. A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 1975;21:510–27. https://doi.org/10.1002/aic.690210313.

    Article  CAS  Google Scholar 

  30. Bondi A. Estimation of heat capacity of liquids. Ind Eng Chem Fundam. 1966;5:442–9. https://doi.org/10.1021/i160020a001.

    Article  CAS  Google Scholar 

  31. Chung TH, Lee LL, Starling KE. Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind Eng Chem Fundam. 1984;23:8–13. https://doi.org/10.1021/i100013a002.

    Article  CAS  Google Scholar 

  32. Filippov L. Thermal conduction of solutions in associated liquids: thermal conduction of 50 organic liquids’. Chem Abstr. 1955;49:15430–1.

    Google Scholar 

  33. Saitoh T, Nagano O. Transient combustion of a fuel droplet with finite rate of chemical reaction. Combust Sci Technol. 1980;22:227–34. https://doi.org/10.1080/00102208008952386.

    Article  CAS  Google Scholar 

  34. Knapp H, Doring R, Oellrich L, Plocker U, Prausnitz JM. Vapor–liquid equilibria for mixtures of low boiling substances vapor–liquid equilibria for mixtures of low boiling substances. In: Chemistry Engineering Data Series, vol VI. Frankfort: DECHEMA; 1982.

  35. Nomura H, Ujiie Y, Rath HJ, Sato J, Kono M. Experimental study on high-pressure droplet evaporation using microgravity conditions. In: Symposium on combustion, vol 26; 1996. p. 1267–73.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neel Kanth Grover.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grover, N.K. Model for transient n-heptane droplet ignition at elevated pressure. J Therm Anal Calorim 141, 2453–2461 (2020). https://doi.org/10.1007/s10973-020-10067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10067-5

Keywords

Navigation