Skip to main content
Log in

Two-phase simulation of nanofluid flow in a heat exchanger with grooved wall

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this paper is to achieve a smaller and cheaper heat exchanger with similar performance. To fulfill this demand, ANSYS-Fluent software and Aspen-HYSYS software are employed. The second goal is to study the effects of using oil-based nanofluids in a refinery heat exchanger. To fulfill this demand, two different nanofluids (MgO-SAE10 and ZnO-SAE10) are studied using two-phase approaches. And the third objective of this paper is to compare the results which are obtained from the singe- and multi-phase approaches. The governing equations have been solved according to the EulerianEulerian single-fluid Two-Phase Model, with presumptuous that the coupling between phases is strong, and nanoparticles carefully follow the suspension flow. The FVM, SIMPLEC algorithm and kε turbulence model are applied. The thermal–hydraulic performance evaluation criteria, THPEC, and q″ have major roles. In the second step, the authors try to achieve an efficient model which not only has the THPEC > 1, but also has the maximum value of q″. According to the results, usage of nanofluid and turbulators can enhance thermal–hydraulic performances of heat exchanger significantly (between 84.78 and 105.31% for heat exchanger 1 and between 86.84% and 107.68% for heat exchanger 2). Furthermore, it is concluded that by employing nanofluid and turbulators the costs of manufacturing the refinery heat exchangers are sharply reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

\(c_{\text{P}}\) :

Specific heat capacity (J kg−1 K−1)

D :

Diffusion

D h :

Hydraulic diameter (m)

d :

Diameter of nanoparticles (nm)

f :

Mean predicted friction factor

k :

Thermal conductivity (W m−1 K−1)

L 1 :

Upstream length (m)

L 2 :

Test section length (m)

L 3 :

Exit section length (m)

M :

Molar mass

N :

Avogadro number

Pr:

Prandtl number

PEC or THPEC:

Thermal–hydraulic performance evaluation criteria

p :

Pressure (Pa)

Q :

Heat flux (W)

q″:

Specific heat flux (W m−2)

Re:

Reynolds number

T :

Temperature (K)

u :

Velocity

V m :

Velocity

α :

Thermal diffusion

μ :

Dynamic viscosity (Ns m−2)

ρ :

Density (kg m−3)

φ :

Nanoparticles volume fraction

∅:

Geometrical diameter (m)

B:

Brownian

bf:

Base fluid

cro:

Crude oil

nf:

Nanofluid

np:

Nanoparticle

BLA:

Blade-corrugated

CYL:

Cylindrical-corrugated

ROD:

Rod-corrugated

SOL:

Solar-corrugated

References

  1. Oyakawa K, Shinzato T, Mabuchi I. The effects of the channel width on heat-transfer augmentation in a sinusoidal wave channel. JSME Int J. 1989;32:403–10.

    CAS  Google Scholar 

  2. Wang GV, Vanka S. Convective heat transfer in periodic wavy passages. Int J Heat Mass Transf. 1995;38(17):3219–30.

    Article  CAS  Google Scholar 

  3. Rush TA, Newell TA, Jacobi AM. An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transf. 1999;42(9):1541–53.

    Article  CAS  Google Scholar 

  4. Ničeno B, Nobile E. Numerical analysis of fluid flow and heat transfer in periodic wavy channels. Int J Heat Fluid Flow. 2001;2:15–167.

    Google Scholar 

  5. Wang CC, Chen CK. Forced convection in a wavy-wall channel. Int J Heat Mass Transf. 2002;45(12):2587–95.

    Article  Google Scholar 

  6. Comini G, Nonino C, Savino S. Effect of aspect ratio on convection enhancement in wavy channels. Numer Heat Transf Part A Appl. 2003;44(1):21–37.

    Article  Google Scholar 

  7. Naphon P, Kornkumjayrit K. Numerical analysis on the fluid flow and heat transfer in the channel with V-shaped wavy lower plate. Int Commun Heat Mass Transfer. 2008;35(7):839–43.

    Article  CAS  Google Scholar 

  8. Naphon P. Effect of wavy plate geometry configurations on the temperature and flow distributions. Int Commun Heat Mass Transf. 2009;36(9):942–6.

    Article  Google Scholar 

  9. Assato M, de Lemos MJ. Turbulent flow in wavy channels simulated with nonlinear models and a new implicit formulation. Numer Heat Transf Part A Appl. 2009;56(4):301–24.

    Article  CAS  Google Scholar 

  10. Sui Y, Teo CJ, Lee PS, Chew YT, Shu C. Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. 2010;53(13–14):2760–72.

    Article  CAS  Google Scholar 

  11. Duan Z, Muzychka YS. Effects of axial corrugated roughness on low Reynolds number slip flow and continuum flow in microtubes. J Heat Transfer. 2010;132(4):1–8.

    Article  Google Scholar 

  12. Zhang L, Che D. Influence of corrugation profile on the thermal hydraulic performance of cross-corrugated plates. Numer Heat Transf Part A Appl. 2011;59(4):267–96.

    Article  Google Scholar 

  13. Zhang L, Che D. Turbulence models for fluid flow and heat transfer between cross-corrugated plates. Numer Heat Transf Part A Appl. 2011;60(5):410–40.

    Article  Google Scholar 

  14. Santra AK, Sen S, Charaborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. Int J Therm Sci. 2009;48(2):391–400.

    Article  CAS  Google Scholar 

  15. Abu-Nada E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow. 2008;29(1):242–9.

    Article  CAS  Google Scholar 

  16. Mohammed HA, Gunnasegaran P, Shuaib NH. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int Commun Heat Mass Transf. 2011;38(1):63–8.

    Article  Google Scholar 

  17. Yin J, Yang G, Li Y. The effects of wavy plate phase shift on flow and heat transfer characteristics in corrugated channel. Energy Procedia. 2012;14:1566–73.

    Article  CAS  Google Scholar 

  18. Manca O, Nardini S, Ricci D. A numerical study of nanofluid forced convection in ribbed channels. Appl Therm Eng. 2012;37:280–92.

    Article  CAS  Google Scholar 

  19. Mohammed HA, Al-Shamani AN, Sheriff JM. Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib-groove channel. Int Commun Heat Mass Transf. 2012;39(10):1584–94.

    Article  CAS  Google Scholar 

  20. Heidary H, Kermani MJ. Effect of nano-particles on forced convection in sinusoidal-wall channel. Int Commun Heat Mass Transf. 2010;37(10):1520–7.

    Article  CAS  Google Scholar 

  21. Ahmed MA, Shuaib NH, Yusoff MZ, Al-Falahi AH. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. Int Commun Heat Mass Transf. 2011;38(10):1368–75.

    Article  CAS  Google Scholar 

  22. Ahmed MA, Shuaib NH, Yusoff MZ. Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Fluid Flow. 2012;55(21–22):5891–8.

    CAS  Google Scholar 

  23. Ahmed MA, Shuaib NH, Yusoff MZ. Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid. Int Commun Heat Mass Transf. 2013;42:69–74.

    Article  CAS  Google Scholar 

  24. Abbasian Arani AA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128–129:550–63.

    Article  Google Scholar 

  25. Sadripour S, Ghorashi SA, Estajloo M. Numerical investigation of a cavity equipped with corrugated heat source: a full convection-conduction-radiation coupling. Am J Aerosp Eng. 2017;4(3):27–37.

    Article  Google Scholar 

  26. Heris SZ, Esfahany MN, Etemad G. Numerical investigation of nanofluid laminar convective heat transfer through a circular tube. Numer Heat Transf Part A Appl. 2017;52(11):1043–58.

    Article  CAS  Google Scholar 

  27. Heris SZ, Etemad SG, Esfahany MN. Convective heat transfer of a Cu/water nanofluid flowing through a circular tube. Exp Heat Transf. 2019;22(4):217–27.

    Article  CAS  Google Scholar 

  28. Keshavarz Moraveji M, Haddad SMH, Darabi M. Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics. Int Commun Heat Mass Transf. 2012;39:995–9.

    Article  CAS  Google Scholar 

  29. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E. 2017;86:68–75.

    Article  CAS  Google Scholar 

  30. Minea AA. Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. Heat Mass Transf. 2014;68:78–84.

    Article  CAS  Google Scholar 

  31. Zeinali Heris S, Etemad SGh, Nasr Esfahany M. Numerical investigation of nanofluid laminar convective heat transfer through a circular tube. Numer Heat Transf Part A Appl. 2007;52(11):1043–58.

    Article  CAS  Google Scholar 

  32. Mohammed HA, Abuobeidab IAMA, Vuthaluru HB, Liua S. Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts. Int Commun Heat Mass Transf. 2019;101:10–20.

    Article  CAS  Google Scholar 

  33. Karimi A, Alrashed Abdullah AAA, Afrand M, Mahian O, Wong wises S, Shahsavar A. The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model. Int J Mech Sci. 2019;156:397–409.

    Article  Google Scholar 

  34. Sheikholeslami M, Rokni HB. Influence of melting surface on MHD nanofluid flow by means of two phase model. Chin J Phys. 2018;55:1352–60.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    Article  CAS  Google Scholar 

  36. Alsarraf J, Moradikazerouni A, Shahsavar A, Afrand M, Salehipour H, Tran MD. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys A. 2019;520:275–88.

    Article  CAS  Google Scholar 

  37. Borah A, Boruah MP, Pati S. Conjugate heat transfer in a duct using nanofluid by two-phase Eulerian-Lagrangian method: effect of non-uniform heating. Powder Technol. 2019;346:180–92.

    Article  CAS  Google Scholar 

  38. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comput Math Appl. 2019;77:662–92.

    Article  Google Scholar 

  39. Rashidi I, Kolsi L, Ahmadi G, Mahian O, Wongwises S, Abu-Nada E. Three-dimensional modelling of natural convection and entropy generation in a vertical cylinder under heterogeneous heat flux using nanofluids. Int J Numer Meth Heat Fluid Flow. 2019;30(1):119–42. https://doi.org/10.1108/HFF-12-2018-0731.

    Article  Google Scholar 

  40. Mahian Omid, Kolsi Lioua, Amani Mohammad, Estellé Patrice, Ahmadi Goodarz, Kleinstreuer Clement, Marshall Jeffrey S, Siavashi Majid, Taylor Robert A, Niazmand Hamid, Wongwises Somchai, Hayat Tasawar, Kolanjiyil Arun, Kasaeian Alibakhsh, Pop Ioan. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  41. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  42. Al-Rashed AA, Aich W, Kolsi L, Mahian O, Hussein AK, Borjini MN. Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling. Entropy. 2017;19(5):200. https://doi.org/10.3390/e19050200.

    Article  CAS  Google Scholar 

  43. Kolsi L, Mahian O, Öztop HF, Aich W, Borjini MN, Abu-Hamdeh N, Aissia HB. 3D buoyancy-induced flow and entropy generation of nanofluid-filled open cavities having adiabatic diamond shaped obstacles. Entropy. 2016;18:232.

    Article  CAS  Google Scholar 

  44. Rashidi S, Eskandarian M, Mahian O, et al. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60. https://doi.org/10.1007/s10973-018-7070-9.

    Article  CAS  Google Scholar 

  45. He B, Lin X, Zhang Y. Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132:1145–52. https://doi.org/10.1007/s10973-018-7043-z.

    Article  CAS  Google Scholar 

  46. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39. https://doi.org/10.1007/s10973-017-6773-7.

    Article  CAS  Google Scholar 

  47. Moghaddaszadeh N, Rashidi S, Abolfazli Esfahani J. Potential of gear-ring turbulator in three-dimensional heat exchanger tube from second law of thermodynamic viewpoint. Int J Numer Meth Heat Fluid Flow. 2019;29(4):1526–43. https://doi.org/10.1108/HFF-05-2018-0250.

    Article  Google Scholar 

  48. Asadi Amin, Pourfattah Farzad. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019;343:296–308.

    Article  CAS  Google Scholar 

  49. Patankar SV. Numerical heat transfer and fluid flow. Abingdon: Taylor & Francis Group; 1980.

    Google Scholar 

  50. Sadripour S. 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran. Int J Numer Methods Heat Fluid Flow. 2019;29(4):1378–402.

    Article  Google Scholar 

  51. Sadripour S, Chamkha AJ. The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector. Therm Sci Eng Prog. 2019;9:266–80.

    Article  Google Scholar 

  52. Sadripour S. Investigation of flow characteristics and heat transfer enhancement of a corrugated duct using nanofluid. J Appl Mech Tech Phys. 2018;59(6):1049–57.

    Article  CAS  Google Scholar 

  53. Sadripour S. First and second laws analysis and optimization of a solar absorber; using insulator mixers and MWCNTs nanoparticles. Global J Res Eng A Mech Mech. 2017;17(5):37–48.

    Google Scholar 

  54. Sadripour S, Adibi M, Sheikhzadeh GA. Two different viewpoints about using aerosol-carbon nanofluid in corrugated solar collectors: thermal-hydraulic performance and heating performance. Global J Res Eng A Mech Mech. 2017;17(5):19–36.

    Google Scholar 

  55. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    Article  CAS  Google Scholar 

  56. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    Article  CAS  Google Scholar 

  57. Launder BE, Spalding DB. Mathematical models of turbulence. New York: Academic Press; 1972.

    Google Scholar 

  58. Anderson JD. Computational fluid dynamics. New York: McGraw-Hill; 1995.

    Google Scholar 

  59. Kim Doohyun, Kwon Younghwan, Cho Yonghyeon, Li Chengguo, Cheong Seongir, Hwang Yujin, Lee Jaekeun, Hong Daeseung, Moon Seongyong. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):119–23.

    Article  Google Scholar 

  60. Anvari AR, Javaherdeh K, Emami-Meibodi M, Rashidi AM. Numerical and experimental investigation of heat transfer behavior in a round tube with the special conical ring inserts. Energy Convers Manag. 2014;88:214–7.

    Article  Google Scholar 

  61. Promvonge P, Eiamsaard S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int Commun Heat Mass Transfer. 2007;34:849–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Mollaei Barzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahedi, M., Mollaei Barzi, Y. & Firouzi, M. Two-phase simulation of nanofluid flow in a heat exchanger with grooved wall. J Therm Anal Calorim 146, 1297–1321 (2021). https://doi.org/10.1007/s10973-020-10066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10066-6

Keywords

Navigation