Skip to main content
Log in

Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present study, a numerical model is employed to investigate the effects of different operating parameters and channel geometry on the performance of membrane humidifier. Simulations are performed by a commercial CFD code and based on user defined functions. Three-dimensional counter-flow humidifier model for a gas-to-gas case is considered. Results show that an increase in porosity or permeability leads to better humidification. Moreover, increase in inlet temperature of dry and wet channels as well as inlet mass flowrate of water vapor would enhance humidifying process. On the other hand, by reduction in inlet mass flowrate of gas channel and thickness of the porous medium in membrane, better humidifier performance would be achieved. To investigate the geometric parameters, three different channel types including stepped, sinusoidal and zigzag are considered. It is found that stepped geometry has the best performance in humidifying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a :

Water vapor activity

C :

Total concentration of species i

D :

Diffusivity

D 0 :

Diffusivity at standard condition

P :

Pressure (Pa)

S u :

Source term of momentum equation

T :

Temperature (K)

u :

Mixture velocity (m s−1)

W m,dry :

Membrane dry equivalent mass

ρ m,dry :

Membrane dry density (kg m−3)

ε :

Porosity in porous media

λ :

Membrane water content

μ :

Mixture viscosity (kg m−1 s−1)

ρ :

Mixture density (kg m−3)

κ :

Permeability (m2)

i :

Species i of fluids

M :

Membrane

eff:

Effective properties

W :

Wet side

References

  1. Hwang JJ, et al. Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack. J Power Sources. 2012;215:69–76.

    Article  CAS  Google Scholar 

  2. Fuel Cell Handbook, seventh ed. EG&G Technical Services, Inc. 2004.

  3. Barbir F. PEM fuel cells. Burlington: Elsevier Academic Press; 2005.

    Google Scholar 

  4. Lee Y, Kim Y, Jang Y, Choi JM. Effects of external humidification on the performance of a polymer electrolyte fuel cell. J Mech Sci Technol. 2007;21(12):2188–95.

    Article  Google Scholar 

  5. Park S-K, Choe S-Y, Choi S-H. Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications. Int J Hydrog Energy. 2008;33(9):2273–82.

    Article  CAS  Google Scholar 

  6. Kang S, Min K, Sangseok Y. Two dimensional dynamic modeling of a shell-and-tube water-to-gas membrane humidifier for proton exchange membrane fuel cell. Int J Hydrog Energy. 2010;35(4):1727–41.

    Article  CAS  Google Scholar 

  7. Pourrahmani H, Moghimi M, Siavashi M. Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel. Int J Hydrog Energy. 2019;44(5):3121–37.

    Article  CAS  Google Scholar 

  8. Pourrahmani H, Moghimi M, Siavashi M, Shirbani M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl Therm Eng. 2019;150:433–44.

    Article  Google Scholar 

  9. Pourrahmani H, Siavashi M, Moghimi M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy. 2019;182:443–59.

    Article  Google Scholar 

  10. Park S, Oh I-H. An analytical model of Nafion™ membrane humidifier for proton exchange membrane fuel cells. J Power Sources. 2009;188(2):498–501.

    Article  CAS  Google Scholar 

  11. Sabharwal M, Duelk C, Bhatia D. Two-dimensional modeling of a cross flow plate and frame membrane humidifier for fuel cell applications. J Membr Sci. 2012;409:285–301.

    Article  Google Scholar 

  12. Yu S, Im S, Kim S, Hwang J, Lee Y, Kang S, Ahn K. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int J Heat Mass Transf. 2011;54(7):1344–51.

    Article  CAS  Google Scholar 

  13. Chen D, Li W, Peng H. An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sources. 2008;180(1):461–7.

    Article  CAS  Google Scholar 

  14. Vasu G, Tangirala AK, Viswanathan B, Dhathathreyan KS. Continuous bubble humidification and control of relative humidity of H 2 for a PEMFC system. Int J Hydrog Energy. 2008;33(17):4640–8.

    Article  CAS  Google Scholar 

  15. Casalegno A, De Antonellis S, Colombo L, Rinaldi F. Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell. Int J Hydrog Energy. 2011;36(8):5000–9.

    Article  CAS  Google Scholar 

  16. Réguillet V, Vaudrey A, Moutin S, Montaut A, François X, Baucour P, Glises R. Definition of efficiency criteria for a fuel cell humidifier: application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures. Appl Therm Eng. 2013;58(1):382–93.

    Article  Google Scholar 

  17. Djilali N. Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy. 2007;32(4):269–80.

    Article  CAS  Google Scholar 

  18. Shamsabadi H, Rashidi S, Esfahani JA, Keshmiri A. Condensation in the presence of non-condensable gases in a convergent 3D channel. Int J Heat Mass Transf. 2020;152:119511.

    Article  Google Scholar 

  19. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135(2):1009–19.

    Article  CAS  Google Scholar 

  20. Yan WM, Lee CY, Li CH, Li WK, Rashidi S. Study on heat and mass transfer of a planar membrane humidifier for PEM fuel cell. Int J Heat Mass Transf. 2020;152:119538.

    Article  CAS  Google Scholar 

  21. Rashidi S, Rahbar N, Valipour MS, Esfahani JA. Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis. Appl Therm Eng. 2018;130:1341–8.

    Article  Google Scholar 

  22. Rashidi S, Bovand M, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis. Energy Convers Manag. 2015;103:726–38.

    Article  Google Scholar 

  23. Rashidi S, Esfahani JA, Karimi N. Porous materials in building energy technologies—a review of the applications, modelling and experiments. Renew Sustain Energy Rev. 2018;91:229–47.

    Article  Google Scholar 

  24. Rashidi S, Kashefi MH, Kim KC, Samimi-Abianeh O. Potentials of porous materials for energy management in heat exchangers—a comprehensive review. Appl Energy. 2019;243:206–32.

    Article  Google Scholar 

  25. Rashidi S, Bovand M, Pop I, Valipour MS. Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder. Transp Porous Media. 2014;102(2):207–25.

    Article  CAS  Google Scholar 

  26. Rashidi S, Tamayol A, Valipour MS, Shokri N. Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int J Heat Mass Transf. 2013;63:91–100.

    Article  Google Scholar 

  27. Bashi M, Rashidi S, Esfahani JA. Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl Therm Eng. 2017;110:1448–61.

    Article  CAS  Google Scholar 

  28. Kazemian Y, Rashidi S, Esfahani JA, Karimi N. Simulation of conjugate radiation-forced convection heat transfer in a porous medium using the lattice Boltzmann method. Meccanica. 2019;54(3):505–24.

    Article  Google Scholar 

  29. Siavashi M, Iranmehr S. Using sharp wedge-shaped porous media in front and wake regions of external nanofluid flow over a bundle of cylinders. Int J Numer Meth Heat Fluid Flow. 2019;29(10):3730–55. https://doi.org/10.1108/HFF-10-2018-0575.

    Article  Google Scholar 

  30. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135:947–61. https://doi.org/10.1007/s10973-018-7335-3.

    Article  CAS  Google Scholar 

  31. Miri Joibary SM, Siavashi M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement. J Therm Anal Calorim. 2020;140:1079–93. https://doi.org/10.1007/s10973-019-08991-2.

    Article  CAS  Google Scholar 

  32. Hong K, Alizadeh R, Ardalan MV, Nourbakhsh A, Karimi N, Yang Y, Xiong Q. Numerical study of nonlinear mixed convection inside stagnation-point flow over surface-reactive cylinder embedded in porous media. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09245-x.

  33. Kaabinejadian A, Ahmadi HA, Moghimi M. Investigation of porous media effects on lithium-ion battery thermal management. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09661-4.

    Article  Google Scholar 

  34. Tahmasbi M, Siavashi M, Abbasi H, et al. Mixed convection enhancement by using optimized porous media and nanofluid in a cavity with two rotating cylinders. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09604-z.

    Article  Google Scholar 

  35. Talesh Bahrami HR, Safikhani H. Heat transfer enhancement inside an eccentric cylinder with an inner rotating wall using porous media: a numerical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09532-y.

    Article  Google Scholar 

  36. Yuan Y, Xu K, Zhao K. Numerical analysis of transport in porous media to reduce aerodynamic noise past a circular cylinder by application of porous foam. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08619-5.

    Article  Google Scholar 

  37. Gholamalipour P, Siavashi M, Doranehgard MH. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. Int Commun Heat Mass Transf. 2019;109:104367.

    Article  CAS  Google Scholar 

  38. Izadi A, Siavashi M, Rasam H, Xiong Q. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Appl Therm Eng. 2020;168:114843.

    Article  CAS  Google Scholar 

  39. Reddy GJ, Bhaskerreddy K, Mahesh K, Bég OA. Transient analysis of Casson fluid thermo-convection from a vertical cylinder embedded in a porous medium: entropy generation and thermal energy transfer visualization. J Cent South Univ. 2019;26(5):1342–61.

    Article  Google Scholar 

  40. Heyhat MM, Mousavi S, Siavashi M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. J Energy Storage. 2020;28:101235.

    Article  Google Scholar 

  41. Baragh S, Shokouhmand H, Ajarostaghi SSM, Nikian M. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. Int J Therm Sci. 2018;134:370–9.

    Article  Google Scholar 

  42. Baragh S, Shokouhmand H, Ajarostaghi SSM. Experiments on mist flow and heat transfer in a tube fitted with porous media. Int J Therm Sci. 2019;137:388–98.

    Article  Google Scholar 

  43. Ajarostaghi SSM, Delavar MA, Poncet S. Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08386-3.

    Article  Google Scholar 

  44. Javadi H, Mousavi Ajarostaghi SS, Rosen MA, Pourfallah M. A comprehensive review of backfill materials and their effects on ground heat exchanger performance. Sustainability. 2018;10(12):4486.

    Article  Google Scholar 

  45. Javadi H, Ajarostaghi SSM, Rosen MA, Pourfallah M. Performance of ground heat exchangers: a comprehensive review of recent advances. Energy. 2019;178:207–33.

    Article  Google Scholar 

  46. Javadi H, Ajarostaghi SSM, Pourfallah M, Zaboli M. Performance analysis of helical ground heat exchangers with different configurations. Appl Therm Eng. 2019;154:24–36.

    Article  Google Scholar 

  47. Javadi H, Ajarostaghi SSM, Mousavi SS, Pourfallah M. Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics. 2019;81:53–73.

    Article  Google Scholar 

  48. Houreh NB, Afshari E. Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems. Int J Hydrog Energy. 2014;39(27):14969–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Soheil Mousavi Ajarostaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi-Valikboni, S.Z., Ajarostaghi, S.S.M., Delavar, M.A. et al. Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. J Therm Anal Calorim 141, 1687–1701 (2020). https://doi.org/10.1007/s10973-020-10058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10058-6

Keywords

Navigation