Skip to main content
Log in

Thermal performance of micro-polymers containing nano-solid structures during transport phenomenon

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The inclusion of solid nano-structures in the liquid changes its rheology and hence its thermal performance. This article considers the impact of nano-solid structure on the ability of the polymer to transport heat. Mathematical models for nano-solid structures and conservation laws are finite element method. The impact of nano-solid structures on transportation of heat is studied via computed solutions. The micro-rotation field increases with an increase in vortex viscosity. The wall shear stress and wall couple stress are increased for vortex viscosity. However, the rate of heat transfer has shown decreasing behavior as a function vortex viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

uv :

Velocity components (m s\(^{-1}\))

Pr :

Prandtl number

M :

Hartmann number

Ec :

Eckert number

\(B_\mathrm{i}\) :

Biot number

\(N_\mathrm{r}\) :

Radiation parameter

Gr :

Grashof number

\({Re}\) :

Reynolds number

Ada :

Consistency numbers

\(\beta _\mathrm{1}\) :

Volumetric expansion coefficient

K :

Micro-polar parameter

T :

Fluid temperature (K)

k :

Thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

Q :

Heat generation/absorption coefficient

\({\mathbf {B}}\) :

Magnetic field (T)

\(k^{*}\) :

Absorption coefficient

\(\sigma ^{*}\) :

Stefan–Boltzmann constant

\(c_\mathrm{p}\) :

Specific heat (J kg\(^{-1}\) K\(^{-1}\))

\(B_\mathrm{0}\) :

Magnetic field strength

g :

Gravitational acceleration (m s\(^{-2}\))

\(\rho\) :

Density (kg m\(^{-3}\))

\(\sigma\) :

Electrical conductivity (\(\Omega ^{-1}\) m\(^{-1}\))

\(\varphi\) :

Volume fraction

\(\mu\) :

Dynamic viscosity (kg m\(^{-1}\) s\(^{-1}\))

\(\eta\) :

Independent similarity function

\(\beta\) :

Heat generation/absorption parameter

\(\lambda\) :

Unsteadiness parameter

\(\gamma\) :

Spin gradient viscosity

f:

Fluid

w:

Wall

p:

Particles

s:

Solid particles

nf:

Nano-fluid

References

  1. Choi SUS Enhancing thermal conductivity of fluids with nano-particles, developments and applications of non-Newtonian flows. ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineering. 1995.

  2. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7(4):227–33.

    Article  CAS  Google Scholar 

  3. Buongiorno J. Convective transport in nano-fluids. J Heat Transfer. 2006;128(3):240–50.

    Article  Google Scholar 

  4. Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transfer. 2010;53:11–2.

    Google Scholar 

  5. Nadeem S, Ul Haqa R, Khan ZH. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nano-particles. J Taiwan Inst Chem Eng. 2014;45(1):121–6.

    Article  CAS  Google Scholar 

  6. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of \(Cu-\)water nanofluid in a wavy cavity using CVFEM. J Thermal Anal Calorim. 2019;135:2599–611.

    Article  CAS  Google Scholar 

  7. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of \(Cu-\)water nanofluid filling triangular cavity with semicircular bottom wall. J Thermal Anal Calorim. 2019;135:3485–97.

    Article  CAS  Google Scholar 

  8. Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Thermal Anal Calorim. 2020;139:661–71.

    Article  CAS  Google Scholar 

  9. Hashemi-Tilehnoee M, Dogonchi AS, Seyyedi SM, Chamkha AJ, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid filled incinerator shaped porous cavity with wavy heater block. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09220-6.

  10. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Ganji DD. Entropy generation and economic analyses in a nanofluid filled L-shaped enclosure subjected to an oriented magnetic field. Appl Thermal Eng. 2020;168:114789.

    Article  CAS  Google Scholar 

  11. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity. Int Commun Heat Mass Transfer. 2020;111:104430.

    Article  CAS  Google Scholar 

  12. Dogonchi AS, Waqas M, Ganji DD. Shape effects of Copper-Oxide \((CuO)\) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach. Int Commun Heat Mass Transfer. 2019;107:14–23.

    Article  CAS  Google Scholar 

  13. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. Numerical simulation for thermal radiation and porous medium characteristics in flow of \(CuO-H_{2}O\) nanofluid. J Braz Soc Mech Sci Eng. 2019;41:249.

    Article  Google Scholar 

  14. Sheikholeslami M. New computational approach for energy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  15. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transfer. 2019;141:974–80.

    Article  CAS  Google Scholar 

  16. Sheikholeslami M. Numerical approach for MHD Al2O3 water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  17. Sheikholeslami M, Sheremet MA, Shafee A, Tlili I. Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Phys A Stat Mech Appl. 2020;2020:124058.

    Article  Google Scholar 

  18. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal-hydraulic performance of a nanofluid flow through a tube. J Thermal Anal Calorim. 2020;139:3319.

    Google Scholar 

  19. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Thermal Anal Calorim. 2019;135:305–23.

    Article  CAS  Google Scholar 

  20. Das S, Chakraborty S, Jana RN, Makinde OD. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Appl Math Mech. 2015;36(12):1593–610.

    Article  Google Scholar 

  21. Rashidi MM, Momoniat E, Ferdowa M, Basiriparsa A. Lie group solution for free convection flow of a nanofluid past a chemically reacting horizontal plate in a porous media. Math Probl Eng. 2014;2014:1–21.

    Article  Google Scholar 

  22. Nadeem S, Saleem S. Unsteady mixed convection flow of nanofluid on a rotating cone with magnetic field. Appl Nanosci. 2014;4:405–14.

    Article  CAS  Google Scholar 

  23. Nawaz M, Hayat T. Axisymmetric stagnation-point flow of nanofluid over a stretching surface. Adv Appl Math Mech. 2014;6(2):220–32.

    Article  Google Scholar 

  24. Nawaz M, Zubair T. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents. Results Phys. 2017;7:4111–22.

    Article  Google Scholar 

  25. Zeeshan A, Hassan M, Ellahi R, Nawaz M. Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation. J Process Mech Eng. 2016;231(4):871–9.

    Article  Google Scholar 

  26. Qureshi IH, Nawaz M, Rana S, Nazir U, Chamkha AJ. Investigation of variable thermo-physical properties of viscoelastic rheology: a Galerkin finite element approach. AIP Adv. 2018;8:075027.

    Article  Google Scholar 

  27. Nawaz M, Rana S, Qureshi IH. Computational fluid dynamic simulations for dispersion of nanoparticles in a magnetohydrodynamic liquid: a Galerkin finite element method. RSC Adv. 2018;8:38324–35.

    Article  CAS  Google Scholar 

  28. Rana S, Nawaz M. Investigation of enhancement of heat transfer in Sutterby nanofluid using Koo-Kleinstreuer and Li (KKL) correlations and Cattaneo-Christov heat flux model. Phys Scr. 2019;94:115213.

    Article  CAS  Google Scholar 

  29. Nawaz M, Rana S. Influence of thermal properties on temperature of fluid with micro-structures. Phys A Stat Mech Appl. 2019;531:121494.

    Article  CAS  Google Scholar 

  30. Nawaz M, Arif U, Qureshi IH. Impact of temperature dependent diffusion coefficients on heat and mass transport in viscoelastic liquid using generalized Fourier theory. Phys Scr. 2019;94(11):115206.

    Article  CAS  Google Scholar 

  31. Rana S, Nawaz M, Alharbi SO. Unsteady heat transfer in colloidal suspension containing hybrid nanostructures. J Thermal Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-09178-5.

    Article  Google Scholar 

  32. Nazir U, Saleem S, Nawaz M, Alderremy AA. Three-dimensional heat transfer in nonlinear flow: a FEM computational approach. J Thermal Anal Calorim. 2019;13:1–10.

    Google Scholar 

  33. Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16(1):1–16.

    Google Scholar 

  34. Kucaba-Pietal A. Microchannel flow modelling with the micropolar fluid theory. Bull Polish Acad Sci Tech Sci. 2004;54(3):209–14.

    Google Scholar 

  35. Butt AS, Ali AA. Computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet. Eur Phys J Plus. 2014;129:1–13.

    Article  Google Scholar 

  36. Bianco V, Nardini S, Manca O. Enhancement of heat transfer and entropy generation analysis of nano-fluids turbulent convection flow in square section tubes. Nanosc Res Lett. 2011;6:252.

    Article  Google Scholar 

  37. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nano-fluids. Int J Heat Fluid Flow. 2009;29:1326–36.

    Article  Google Scholar 

  38. Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 2014;267:256–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nawaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, S., Nawaz, M., Saif, R.S. et al. Thermal performance of micro-polymers containing nano-solid structures during transport phenomenon. J Therm Anal Calorim 146, 1323–1333 (2021). https://doi.org/10.1007/s10973-020-10017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10017-1

Keywords

Navigation