Influence of the adjacent layers on the crystallization kinetics of Ge2Sb2Te5 thin films

Abstract

The influence of the adjacent layers (SiO2, Al, Ni, Ti, W, TiN, TiN/W) on the crystallization kinetics of Ge2Sb2Te5 thin films was investigated using the techniques based on the application of two different methods—differential scanning calorimetry and measurements of the resistivity temperature dependences. Thin films were deposited by the magnetron sputtering. The composition of the films was determined by the Auger spectroscopy and was close to Ge2Sb2Te5. X-ray diffraction was used to investigate the structure of thin films and showed that the as-deposited films were in an amorphous state, while heat treatment at 250 °C for 30 min led to the crystallization to the cubic (rock salt) phase. Effective activation energy of crystallization obtained by differential scanning calorimetry at the beginning of the crystallization was 1.8 eV and then slightly decreased to 1.7 eV at the end of the process. The values of the effective activation energy obtained from the measurements of the resistivity temperature dependences were in the range of 2.5–2.9 eV at the beginning and in the range of 2.2–3.5 eV at the end of the crystallization process. The difference in the effective activation energies of crystallization for the GST225 thin films deposited on the different sublayers is caused by the influence of the neighboring sublayers on the crystallization process. It was found that crystallization temperatures correlate with the effective activation energies and increase with their growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kim JH, Byeon DS, Ko DH, Park JH. Physical and electrical characteristics of GexSb100−x films for use as phase-change materials. Thin Solid Films. 2018;659:1–6.

    CAS  Google Scholar 

  2. 2.

    Sherchenkov A, Kozyukhin S, Babich A, Lazarenko P. Thermal properties of phase change material Ge2Sb2Te5 doped with Bi. J Non-Cryst Sol. 2013;377:26–9.

    CAS  Google Scholar 

  3. 3.

    Burr GW, Breitwisch MJ, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras LA, Padilla A, Rajendran B, Raoux S, Shenoy RS. Phase change memory technology. J Vac Sci Technol, B. 2010;28:223–62.

    CAS  Google Scholar 

  4. 4.

    Zheng Q, Wang Y, Zhu J. Nanoscale phase-change materials and devices. J Phys D Appl Phys. 2017;50:243002.

    Google Scholar 

  5. 5.

    Wang L, Ren W, Wen J, Xiong B. Overview of phase-change electrical probe memory. Nanomaterials. 2018;8:772.

    PubMed Central  Google Scholar 

  6. 6.

    Burr GW, Brightsky MJ, Sebastian A, Cheng HY, Wu JY, Kim S, Sosa NE, Papandreou N, Lung HL, Pozidis H, Eleftheriou E, Lam CH. Recent progress in phase-change memory technology. IEEE J Emerg Selected Topics Circuits Syst. 2016;6(2):146–62.

    Google Scholar 

  7. 7.

    Guo P, Sarangan AM, Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Appl Sci. 2019;9:530.

    CAS  Google Scholar 

  8. 8.

    Raoux S, Wełnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev. 2010;110:240–67.

    CAS  PubMed  Google Scholar 

  9. 9.

    Yamada N, Ohno E, Akahira N, Nishiuchi K, Nagata K, Takao MJ. High speed overwritable phase change optical disk material. J Appl Phys. 1987;26:61.

    Google Scholar 

  10. 10.

    Redaelli A. Self-consistent numerical model. In: Phase change memory 2018 (pp. 65–88). Springer, Cham.

  11. 11.

    Athmanathan A, Stanisavljevic M, Papandreou N, Pozidis H, Eleftheriou E. Multilevel-cell phase-change memory: a viable technology. IEEE J Emerg Selected Topics Circuits Syst. 2016;6(1):87–100.

    Google Scholar 

  12. 12.

    Skelton JM, Loke D, Lee TH, Elliott SR. Understanding the multistate SET process in Ge–Sb–Te–based phase-change memory. J Appl Phys. 2012;112:064901.

    Google Scholar 

  13. 13.

    He Q, Li Z, Peng JH, Deng YF, Zeng BJ, Zhou W, Miao XS. Continuous controllable amorphization ratio of nanoscale phase change memory cells. Appl Phys Lett. 2014;104:223502.

    Google Scholar 

  14. 14.

    Yang F, Xu L, Chen J, Xu J, Yu Y, Ma Z, Chen K. Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy. Nanotechnology. 2015;27(3):035706.

    PubMed  Google Scholar 

  15. 15.

    Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M. Rapid-phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys. 1991;69(5):2849–56.

    CAS  Google Scholar 

  16. 16.

    Jeong TH, Kim MR, Seo H, Kim SJ, Kim SY. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J Appl Phys. 1999;86:774–8.

    CAS  Google Scholar 

  17. 17.

    Park J, Kim MR, Choi WS, Seo H, Yeon C. Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior. Jpn J Appl Phys. 1999;38:4775–9.

    CAS  Google Scholar 

  18. 18.

    Seo H, Jeong TH, Park JW, Yeon C, Kim SJ, Kim SY. Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films. Jpn J App. Phys. 2000;39:745–51.

    CAS  Google Scholar 

  19. 19.

    Sherchenkov A, Kozyukhin S, Babich A. Estimation of kinetic parameters for the phase change memory materials by DSC measurements. J Therm Anal Calorim. 2014;117(3):1509–16.

    CAS  Google Scholar 

  20. 20.

    Svoboda R, Karabyn V, Malek J, Frumar M, Benes L, Vlcek M. Amorphous-to-crystalline transition in Ge8Sb(2-x)BixTe11 phase-change materials for data recording. J Alloys Compd. 2016;674:63–72.

    CAS  Google Scholar 

  21. 21.

    Karabyn V, Himics D, Prikryl J, Benes L, Svoboda R, Frumarova B, Wagner T, Frumar M. Physico-chemical properties of the Ge8Sb2-xBixTe11 bulks and thin films. Chalcogenide Lett. 2017;14(11):489–97.

    CAS  Google Scholar 

  22. 22.

    Aly KA. Crystallization study of Se86Sb14 glass. J Therm Anal Calorim. 2017;129:709–14.

    CAS  Google Scholar 

  23. 23.

    Babich A, Sherchenkov A, Kozyukhin S, Lazarenko P, Boytsova O, Shuliatyev A. Effect of doping on the crystallization kinetics of phase change memory materials on the basis of Ge–Sb–Te system. J Therm Anal Calorim. 2017;127(1):283–90.

    CAS  Google Scholar 

  24. 24.

    Kato N, Konomi I, Seno Y, Motohiro T. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment. Appl Surf Sci. 2015;244:281–4.

    Google Scholar 

  25. 25.

    Ruitenberg G, Petford-Long AK, Doole RC. Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J Appl Phys. 2002;92(6):3116–23.

    CAS  Google Scholar 

  26. 26.

    Privitera S, Bongiorno C, Rimini E, Zonca R. Crystal nucleation and growth processes in Ge2Sb2Te5. Appl Phys Lett. 2004;84(22):4448–50.

    CAS  Google Scholar 

  27. 27.

    Pandian R, Kooi BJ, De Hosson JTM, Pauza A. Influence of capping layers on the crystallization of doped SbxTe fast-growth phase-change films. J Appl Phys. 2006;100(12):123511.

    Google Scholar 

  28. 28.

    Privitera S, Lombardo S, Bongiorno C, Rimini E, Pirovano A. Phase change mechanisms in Ge2Sb2Te5. J App Phys. 2007;102(1):013516.

    Google Scholar 

  29. 29.

    Ohshima N. Crystallization of germanium–antimony–tellurium amorphous thin film sandwiched between various dielectric protective films. J Appl Phys. 1996;79(11):8357–63.

    CAS  Google Scholar 

  30. 30.

    Tominaga J, Nakano T, Atoda N. Double optical phase transition of GeSbTe thin films sandwiched between two SiN layers. Jpn J Appl Phys. 1998;37(1):1852–4.

    CAS  Google Scholar 

  31. 31.

    Men L, Tominaga J, Fuji H, Kikukawa T, Atoda N. The effects of metal-doped GeSbTe films on light scattering-mode super-resolution near-field structure (super-RENS). Jpn J Appl Phys. 2001;40(1):1629–33.

    CAS  Google Scholar 

  32. 32.

    Weidenhof V, Friedrich I, Ziegler S, Wuttig M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J Appl Phys. 2001;89(6):3168–76.

    CAS  Google Scholar 

  33. 33.

    Kim D, Kim SJ, An SH, Kim SY. Ellipsometric simulation and preliminary observation of fast crystallization behavior of Ge2Sb2Te5 amorphous thin films at elevated temperature. Jpn J Appl Phys. 2003;42(8):5107–12.

    CAS  Google Scholar 

  34. 34.

    Morales-Sanchez E, Prokhorov EF, Gonzalez-Hernandez J, Mendoza-Galvan A. Structural, electric and kinetic parameters of ternary alloys of GeSbTe. Thin Solid Films. 2005;471(1–2):243–7.

    CAS  Google Scholar 

  35. 35.

    Rodríguez CVR, Sanchez EM, Hernández JG, Prokhorov E, Saldaña JM, Martínez GT. Estimate of the crystallization kinetics in stoichiometry compositions films of Ge:Sb:Te. J Surf Eng Mater Adv Technol. 2012;2(1):44–6.

    Google Scholar 

  36. 36.

    Friedrich I, Weidenhof V, Njoroge W, Franz P, Wuttig M. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J Appl Phys. 2000;87(9):4130.

    CAS  Google Scholar 

  37. 37.

    González-Hernández J, Prokhorov E, Vorobiev Y. Temperature dependence of structure and electrical properties of germanium-antimony-tellurium thin film. J Vac Sci Technol A Vacuum Surf Films. 2000;18(4):1694–700.

    Google Scholar 

  38. 38.

    Wamwangi D, Njoroge WK, Wuttig M. Crystallization kinetics of Ge4Sb1Te5 films. Thin Solid Films. 2002;408(1–2):310–5.

    CAS  Google Scholar 

  39. 39.

    Privitera S, Rimini E, Bongiorno C, Zonca R, Pirovano A, Bez R. Crystallization and phase separation in Ge2+xSb2Te5 thin films. J Appl Phys. 2003;94(7):4409–13.

    CAS  Google Scholar 

  40. 40.

    Njoroge WK, Dieker H, Wuttig M. Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films. J Appl Phys. 2004;96(5):2624–7.

    CAS  Google Scholar 

  41. 41.

    Wei X, Shi L, Chong TC, Zhao R, Lee HK. Thickness dependent nano-crystallization in Ge2Sb2Te5films and its effect on devices. Jpn J Appl Phys. 2007;46(1):2211–4.

    CAS  Google Scholar 

  42. 42.

    Cheng HY, Kao KF, Lee CM, Chin TS. Crystallization kinetics of Ga–Sb–Te films for phase change memory. Thin Solid Films. 2008;516(16):5513–7.

    CAS  Google Scholar 

  43. 43.

    Choi Y, Jung M, Lee YK. Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film. Electrochem Solid-State Lett. 2009;12(7):F17–9.

    CAS  Google Scholar 

  44. 44.

    Huang YJ, Chen YC, Hsieh TE. Phase transition behaviors of Mo- and nitrogen-doped Ge2Sb2Te5 thin films investigated by in situ electrical measurements. J Appl Phys. 2009;106(3):034916.

    Google Scholar 

  45. 45.

    Huang YJ, Chung TC, Wang CH, Hsieh TE. Characterizations of AgInSbTe and its nanocomposite thin films for phase-change memory applications. J Electrochem Soc. 2010;157(12):P113–8.

    CAS  Google Scholar 

  46. 46.

    Chang PC, Chang SC, Chin TS. Crystallization kinetics and X-ray photoelectron spectroscopy of Ga2TeSb7 thin film. J Vac Sci Technol. 2011;29(4):04D111.

    Google Scholar 

  47. 47.

    Muchira IW, Njoroge WK, Karimi PM. Crystallization kinetics of In40Se60 thin films for phase change random access memory (PRAM) applications. J Ovonic Res. 2015;11(3):131–6.

    CAS  Google Scholar 

  48. 48.

    Smili B, Abadlia L, Bouchelaghem W, Fazel N, Kaban I, Gasser F, Gasser JG. Crystallization kinetics study of melt-spun Zr66.7Ni33.3 amorphous alloy by electrical resistivity measurements. J Therm Anal Calorim. 2019;136(3):1053–67.

    CAS  Google Scholar 

  49. 49.

    Sherchenkov A, Kozyukhin S, Babich A, Lazarenko P, Kalugin V, Timoshenkov S, Borgardt N, Sybina Y. Crystallization mechanism and kinetic parameters in Ge2Sb2Te5 thin films for the phase change memory application. Chalcogenide Lett. 2018;15(1):45–54.

    CAS  Google Scholar 

  50. 50.

    Miyagawa N. Overview of blu-ray disc™ recordable/rewritable media technology. Front Optoelectron. 2014;7(4):409–24.

    Google Scholar 

  51. 51.

    Mott NF, Davis EA. Electronic processes in non-crystalline materials. 2nd ed. Oxford: Oxford University Press; 1979.

    Google Scholar 

  52. 52.

    Kato T, Tanaka K. Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Jpn J Appl Phys. 2005;44(10):7340–4.

    CAS  Google Scholar 

  53. 53.

    Xu L, Tong L, Geng L, Yang F, Xu J, Su W, Liu D, Ma Z, Chen K. A comparative study on electrical transport properties of thin films of Ge1Sb2Te4 and Ge2Sb2Te5 phase-change materials. J Appl Phys. 2011;110(1):013703.

    Google Scholar 

  54. 54.

    El-Oyoun MA. An investigation of the kinetic transformation mechanism of Ge12.5Te87.5 chalcogenide glass under non-isothermal regime. J Non Cryst Solids. 2011;357(7):1729–35.

    Google Scholar 

  55. 55.

    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    CAS  Google Scholar 

  56. 56.

    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    CAS  Google Scholar 

  57. 57.

    Mothé CG, de Freitas JS. Lifetime prediction and kinetic parameters of thermal decomposition of cashew gum by thermal analysis. J Therm Anal Calorim. 2018;131:397–404.

    Google Scholar 

  58. 58.

    Aboulkas A, El Harfi K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale. 2008;25(4):426–43.

    CAS  Google Scholar 

  59. 59.

    Kongkaew N, Pruksakit W, Patumsawad S. Thermogravimetric kinetic analysis of the pyrolysis of rice straw. Energy Procedia. 2015;79:663–70.

    CAS  Google Scholar 

  60. 60.

    Mehta N, Kumar A. Studies of crystallization kinetics in a-Se80–xTe20Cdx and a-Se80–xTe20Gex alloys using D.C. conductivity measurements. J Therm Anal Calorim. 2006;83(3):669–73.

    CAS  Google Scholar 

  61. 61.

    Barre P. Kinetika geterogennih processov (in Russian). Moscow: Mir Publishers; 1976.

    Google Scholar 

  62. 62.

    Vorobyov V, Lazarenko P, Sherchenkov A, Vishnyakov N, Ermachikhin A, Kozyukhin S. Kinetics of volume and surface driven crystallization in thin films. J Phys: Condens Matter. 2020;32:355401.

    CAS  Google Scholar 

  63. 63.

    Krongauz VV, Bennett SE, Ling MTK. Kinetics of water vapor diffusion in resins. J Therm Anal Calorim. 2016;125(1):231–43.

    CAS  Google Scholar 

  64. 64.

    Ganeshan G, Shadangi KP, Mohanty K. Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats-Redfern method. J Therm Anal Calorim. 2018;131(2):1803–16.

    CAS  Google Scholar 

  65. 65.

    Brown M. Handbook of thermal analysis and calorimetry. Amsterdam: Elsiever Science B.V; 1998.

    Google Scholar 

  66. 66.

    Sutou Y, Kamada T, Sumiya M, Saito Y, Koike J. Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials. Acta Mater. 2012;60(3):872–80.

    CAS  Google Scholar 

  67. 67.

    Zhang T, Song Z, Wang F, Liu B, Feng S, Chen B. Te-free SiSb phase change material for high data retention phase change memory application. Jpn J Appl Phys. 2017;46(7L):L602–4.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (Project Number 18-79-10231). The studies were performed using equipment of Core Facilities Center “MEMS and electronic components” and “STI Sensory” of MIET.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexey Yakubov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakubov, A., Sherchenkov, A., Babich, A. et al. Influence of the adjacent layers on the crystallization kinetics of Ge2Sb2Te5 thin films. J Therm Anal Calorim 142, 1019–1029 (2020). https://doi.org/10.1007/s10973-020-10013-5

Download citation

Keywords

  • Phase-change memory
  • Ge2Sb2Te5
  • Kinetics of crystallization