Skip to main content
Log in

A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

These days, the importance of energy consumption has led scientists to optimize thermal devices. One of the solutions proposed for this purpose is using solid nanoparticles to amend the thermal properties of conventional fluids. Adding the nanoparticles into the foundation fluids results in an improvement in the fluid properties (thermal conductivity, viscosity, etc.). Nanofluid (NF) has been drawing attention in various engineering applications in the past decade due to its superior heat transfer characteristics than the conventional working fluid. In recent years, the researchers have focused on adding two or more nanoparticles into foundation fluids, known as hybrid nanoparticles. Hybrid nanofluids (HNFs) suggest a more appropriate heat transfer performance and thermophysical features than the conventional heat transfer fluids (ethylene glycol, water and oil) and even NFs with single nanoparticles. It was proven that HNF can be an alternative to the single NF, since it can provide more heat transfer enhancement, particularly in the context of the solar energy, electromechanical, HVAC, electromechanical and automobile. In the current research, the properties, preparation and stability of HNFs are investigated. Also, some models and correlations for predicting HNFs properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gholipour S, Afrand M, Kalbasi R. Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: Introducing helical coil and spiral tube adsorbent tubes. Renew Energy. 2020;151:772–81.

    Google Scholar 

  2. Shanazari E, Kalbasi R. Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis. Appl Therm Eng. 2018;143:1–10.

    Google Scholar 

  3. Ahmadi-Nadooshan A, Kalbasi R, Afrand M. Perforated fins effect on the heat transfer rate from a circular tube by using wind tunnel: an experimental view. Heat Mass Transf. 2018;54:3047–57.

    CAS  Google Scholar 

  4. Liu W, Kalbasi R, Afrand M. Solutions for enhancement of energy and exergy efficiencies in air handling units. J Clean Prod. 2020;257:120565.

    Google Scholar 

  5. Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. Rheological behavior of hybrid MWCNTs-TiO2/EG NF: a comprehensive modeling and experimental study. J Mol Liq. 2020;308:113058.

    CAS  Google Scholar 

  6. Yari M, Kalbasi R, Talebizadehsardari P. Energetic-exergetic analysis of an air handling unit to reduce energy consumption by a novel creative idea. Int J Numer Meth Heat Fluid Flow. 2019;29:3959–75.

    Google Scholar 

  7. Kalbasi R, Ruhani B, Rostami S. Energetic analysis of an air handling unit combined with enthalpy air-to-air heat exchanger. J Therm Anal Calorim. 2019;32:1–10.

    Google Scholar 

  8. Tian M-W, Ebadi AG, Jermsittiparsert K, Kadyrov M, Ponomarev A, Javanshir N, Nojavan S. Risk-based stochastic scheduling of energy hub system in the presence of heating network and thermal energy management. Appl Therm Eng. 2019;159:113825.

    Google Scholar 

  9. Tian M-W, Parikhani T, Jermsittiparsert K, Ashraf MA. Exergoeconomic optimization of a new double-flash geothermal-based combined cooling and power (CCP) system at two different cooling temperatures assisted by boosters. J Clean Prod. 2020;261:120921.

    Google Scholar 

  10. Tian M-W, Yan S-R, Tian X-X, Nojavan S, Jermsittiparsert K. Risk and profit-based bidding and offering strategies for pumped hydro storage in the energy market. J Clean Prod. 2020;256:120715.

    Google Scholar 

  11. Tian M-W, Yuen H-C, Yan S-R, Huang W-L. The multiple selections of fostering applications of hydrogen energy by integrating economic and industrial evaluation of different regions. Int J Hydrogen Energy. 2019;44:29390–8.

    CAS  Google Scholar 

  12. Yan S-R, Fazilati MA, Samani N, Ghasemi HR, Toghraie D, Nguyen Q, Karimipour A. Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. J Energy Storage. 2020;30:101445.

    Google Scholar 

  13. Tian M-W, Yan S-R, Han S-Z, Nojavan S, Jermsittiparsert K, Razmjooy N. New optimal design for a hybrid solar chimney, solid oxide electrolysis and fuel cell based on improved deer hunting optimization algorithm. J Clean Prod. 2020;249:119414.

    CAS  Google Scholar 

  14. Buongiorno J. Convective transport in NFs. J Heat Transfer. 2005;128:240–50.

    Google Scholar 

  15. Yan S-R, Kalbasi R, Nguyen Q, Karimipour A. Sensitivity of adhesive and cohesive intermolecular forces to the incorporation of MWCNTs into liquid paraffin: Experimental study and modeling of surface tension. J Mol Liq. 2020;310:113235.

    CAS  Google Scholar 

  16. Yan S-R, Shirani N, Zarringhalam M, Toghraie D, Nguyen Q, Karimipour A. Prediction of boiling flow characteristics in rough and smooth microchannels using molecular dynamics simulation: Investigation the effects of boundary wall temperatures. J Mol Liq. 2020;306:112937.

    CAS  Google Scholar 

  17. S.-R. Yan, D. Toghraie, M. Hekmatifar, M. Miansari, S. Rostami, Molecular dynamics simulation of Water-Copper NF flow in a three-dimensional nanochannel with different types of surface roughness geometry. J Mol Liq (2020) 113222.

  18. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  19. Mahbubul I, Saidur R, Amalina M. Latest developments on the viscosity of NFs. Int J Heat Mass Transf. 2012;55:874–85.

    CAS  Google Scholar 

  20. Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of NF variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49:479–91.

    CAS  Google Scholar 

  21. Mahbubul I, Saidur R, Amalina M. Thermal conductivity, viscosity and density of R141b refrigerant based NF. Proc Eng. 2013;56:310–5.

    CAS  Google Scholar 

  22. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in, Argonne National Lab., IL (United States), 1995.

  23. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Y. Ebata, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles), (1993).

  24. Saleh R, Putra N, Prakoso SP, Septiadi WN. Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO NFs. Int J Therm Sci. 2013;63:125–32.

    CAS  Google Scholar 

  25. I. Mahbubul, R. Saidur, M. Amalina. Investigation of viscosity of R123-TiO2 nanorefrigerant. In: Proceedings of regional tribology conference 2011: RTC. 2011

  26. Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of NFs at low temperatures. Appl Energy. 2012;97:876–80.

    CAS  Google Scholar 

  27. Żyła G, Fal J, Estellé P. The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture NFs. Diam Relat Mater. 2017;74:81–9.

    Google Scholar 

  28. Gomez-Villarejo R, Aguilar T, Hamze S, Estellé P, Navas J. Experimental analysis of water-based NFs using boron nitride nanotubes with improved thermal properties. J Mol Liq. 2019;277:93–103.

    CAS  Google Scholar 

  29. Minea AA, Estellé P. Numerical study on CNT NFs behavior in laminar pipe flow. J Mol Liq. 2018;271:281–9.

    CAS  Google Scholar 

  30. Żyła G, Vallejo JP, Lugo L. Isobaric heat capacity and density of ethylene glycol based NFs containing various nitride nanoparticle types: an experimental study. J Mol Liq. 2018;261:530–9.

    Google Scholar 

  31. Joseph A, Żyła G, Thomas VI, Nair PR, Padmanabhan A, Mathew S. Paramagnetic ionic liquids for advanced applications: a review. J Mol Liq. 2016;218:319–31.

    CAS  Google Scholar 

  32. Öztop HF, Estellé P, Yan W-M, Al-Salem K, Orfi J, Mahian O. A brief review of natural convection in enclosures under localized heating with and without NFs. Int Commun Heat Mass Transfer. 2015;60:37–44.

    Google Scholar 

  33. Żyła G, Fal J. Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent NFs: an experimental studies. Thermochim Acta. 2017;650:106–13.

    Google Scholar 

  34. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with NFs. Int J Heat Mass Transf. 2009;52:3187–96.

    Google Scholar 

  35. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of NFs. Renew Sustain Energy Rev. 2007;11:512–23.

    CAS  Google Scholar 

  36. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R. Effect of CNT structures on thermal conductivity and stability of NF. Int J Heat Mass Transf. 2012;55:1529–35.

    CAS  Google Scholar 

  37. Lee J-H, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SU, Choi CJ. Effective viscosities and thermal conductivities of aqueous NFs containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6.

    CAS  Google Scholar 

  38. Tiwari AK, Ghosh P, Sarkar J. Performance comparison of the plate heat exchanger using different NFs. Exp Thermal Fluid Sci. 2013;49:141–51.

    CAS  Google Scholar 

  39. Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2—water based NFs. Int J Therm Sci. 2005;44:367–73.

    CAS  Google Scholar 

  40. Eastman JA, Choi S, Li S, Yu W, Thompson L. Anomalously augmented effective thermal conductivities of ethylene glycol-based NFs containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    CAS  Google Scholar 

  41. Verma SK, Tiwari AK. Progress of NF application in solar collectors: a review. Energy Convers Manage. 2015;100:324–46.

    CAS  Google Scholar 

  42. Lee KJ, Yoon SH, Jang J. Carbon nanofibers: a novel nanofiller for NF applications. Small. 2007;3:1209–13.

    PubMed  CAS  Google Scholar 

  43. Nadooshan AA, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG HNF for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol Liq. 2018;253:169–77.

    Google Scholar 

  44. Roubort J. NFs industrial cooling. North America: ANL Michellin; 2009.

    Google Scholar 

  45. Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong B, Forrest E. NFs for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nucl Technol. 2008;162:80–91.

    CAS  Google Scholar 

  46. Buongiorno J, Hu L, Apostolakis G, Hannink R, Lucas T, Chupin A. A feasibility assessment of the use of NFs to enhance the in-vessel retention capability in light-water reactors. Nucl Eng Des. 2009;239:941–8.

    CAS  Google Scholar 

  47. Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3–water NF for an electronic liquid cooling system. Appl Therm Eng. 2007;27:1501–6.

    CAS  Google Scholar 

  48. Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica–water nano-fluids. Int J Heat Mass Transf. 2004;47:407–11.

    CAS  Google Scholar 

  49. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 HNFs. Exp Thermal Fluid Sci. 2014;52:104–15.

    CAS  Google Scholar 

  50. Harandi SS, Karimipour A, Afrand M, Akbari M, D'Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG HNF: effects of temperature and concentration. Int Commun Heat Mass Transfer. 2016;76:171–7.

    Google Scholar 

  51. Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic NF based on TiO 2/Ag composite nanoparticles. RSC Adv. 2014;4:16206–13.

    CAS  Google Scholar 

  52. Rativa D, Gómez-Malagón LA. Solar radiation absorption of NFs containing metallic nanoellipsoids. Sol Energy. 2015;118:419–25.

    CAS  Google Scholar 

  53. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water HNF in heat transfer. Exp Thermal Fluid Sci. 2012;38:54–60.

    CAS  Google Scholar 

  54. Sanchez C, Julián B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15:3559–922.

    CAS  Google Scholar 

  55. Hammerschmidt U, Sabuga W. Transient hot wire (THW) method: uncertainty assessment. Int J Thermophys. 2000;21:1255–78.

    CAS  Google Scholar 

  56. Healy J, De Groot J, Kestin J. The theory of the transient hot-wire method for measuring thermal conductivity. Phys B. 1976;82:392–408.

    Google Scholar 

  57. P. Vadasz, Heat conduction in NF suspensions (2006).

  58. Madhesh D, Kalaiselvam S. Experimental analysis of HNF as a coolant. Proc Eng. 2014;97:1667–755.

    CAS  Google Scholar 

  59. Shahsavar A, Saghafian M, Salimpour M, Shafii M. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.

    CAS  Google Scholar 

  60. Shahsavar A, Salimpour M, Saghafian M, Shafii M. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.

    CAS  Google Scholar 

  61. Sundar LS, Singh MK, Ramana EV, Singh B, Grácio J, Sousa AC. Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite NFs. Sci Rep. 2014;4:4039.

    PubMed  PubMed Central  Google Scholar 

  62. Nine MJ, Batmunkh M, Kim J-H, Chung H-S, Jeong H-M. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J Nanosci Nanotechnol. 2012;12:4553–9.

    PubMed  CAS  Google Scholar 

  63. Batmunkh M, Tanshen MR, Nine MJ, Myekhlai M, Choi H, Chung H, Jeong H. Thermal conductivity of TiO2 nanoparticles based aqueous NFs with an addition of a modified silver particle. Ind Eng Chem Res. 2014;53:8445–511.

    CAS  Google Scholar 

  64. Chen L, Yu W, Xie H. Enhanced thermal conductivity of NFs containing Ag/MWNT composites. Powder Technol. 2012;231:18–20.

    CAS  Google Scholar 

  65. Jha N, Ramaprabhu S. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based NFs. J Phys Chem C. 2008;112:9315–9.

    CAS  Google Scholar 

  66. Jha N, Ramaprabhu S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based NFs. J Appl Phys. 2009;106:084317.

    Google Scholar 

  67. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of NF hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39:3885–911.

    CAS  Google Scholar 

  68. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    CAS  Google Scholar 

  69. Amiri M, Movahedirad S, Manteghi F. Thermal conductivity of water and ethylene glycol NFs containing new modified surface SiO2-Cu nanoparticles: Experimental and modeling. Appl Therm Eng. 2016;108:48–53.

    CAS  Google Scholar 

  70. Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, Alehashem MS, Dahari M, Kazi S. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum HNF. Int Commun Heat Mass Transfer. 2016;77:15–211.

    CAS  Google Scholar 

  71. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi S, Dahari M. Graphene nanoplatelets–silver HNFs for enhanced heat transfer. Energy Convers Manage. 2015;100:419–28.

    CAS  Google Scholar 

  72. Askari S, Lotfi R, Rashidi A, Koolivand H, Koolivand-Salooki M. Rheological and thermophysical properties of ultra-stable kerosene-based Fe3O4/Graphene NFs for energy conservation. Energy Convers Manage. 2016;128:134–44.

    CAS  Google Scholar 

  73. Sundar LS, Ramana EV, Graça M, Singh MK, Sousa AC. Nanodiamond-Fe3O4 NFs: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transfer. 2016;73:62–74.

    CAS  Google Scholar 

  74. Esfe MH, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int Commun Heat Mass Transfer. 2015;69:29–33.

    Google Scholar 

  75. Esfe MH, Arani AAA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water HNF. Int Commun Heat Mass Transfer. 2015;66:189–95.

    Google Scholar 

  76. Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related NFs. Thermochim Acta. 2012;549:87–94.

    CAS  Google Scholar 

  77. Ho C, Huang J, Tsai P, Yang Y. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transfer. 2010;37:490–4.

    CAS  Google Scholar 

  78. Hussein AM. Thermal performance and thermal properties of HNF laminar flow in a double pipe heat exchanger. Exp Thermal Fluid Sci. 2017;88:37–45.

    CAS  Google Scholar 

  79. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil HNF as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    CAS  Google Scholar 

  80. Parsian A, Akbari M. New experimental correlation for the thermal conductivity of ethylene glycol containing Al2O3–Cu hybrid nanoparticles. J Therm Anal Calorim. 2018;131:1605–13.

    CAS  Google Scholar 

  81. Wei B, Zou C, Yuan X, Li X. Thermo-physical property evaluation of diathermic oil based HNFs for heat transfer applications. Int J Heat Mass Transf. 2017;107:281–7.

    CAS  Google Scholar 

  82. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO 2/EG HNF. J Therm Anal Calorim. 2016;125:527–35.

    CAS  Google Scholar 

  83. K. Hamid, W. Azmi, M. Nabil, R. Mamat, Improved thermal conductivity of TiO2–SiO2 HNF in ethylene glycol and water mixture, in: IOP Conference series: materials science and engineering, Vol. 257, IOP Publishing, 2017, pp. 012067.

  84. Hamid KA, Azmi W, Nabil M, Mamat R, Sharma K. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 NFs. Int J Heat Mass Transf. 2018;116:1143–52.

    CAS  Google Scholar 

  85. Nabil M, Azmi W, Hamid KA, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 NFs in water: ethylene glycol mixture. Int Commun Heat Mass Transfer. 2017;86:181–9.

    CAS  Google Scholar 

  86. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water HNF: an experimental study. Powder Technol. 2018;323:367–73.

    CAS  Google Scholar 

  87. Mechiri S, Vasu V, Venu-Gopal A. Investigation of thermal conductivity and rheological properties of vegetable oil based HNFs containing Cu–Zn hybrid nanoparticles. Experimental Heat Transfer. 2017;30:205–17.

    CAS  Google Scholar 

  88. Leong KY, Razali I, Ahmad KK, Ong HC, Ghazali MJ, Rahman MRA. Thermal conductivity of an ethylene glycol/water-based NF with copper-titanium dioxide nanoparticles: an experimental approach. Int Commun Heat Mass Transfer. 2018;90:23–8.

    CAS  Google Scholar 

  89. Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M. Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based NF. Exp Heat Transfer. 2016;29:124–38.

    CAS  Google Scholar 

  90. M. Nabil, W. Azmi, K. Hamid, R. Mamat. Heat transfer and friction factor of composite TiO2–SiO2 NFs in water-ethylene glycol (60: 40) mixture. In: IOP conference series: materials science and engineering, Vol. 257. IOP Publishing; 2017, pp. 012066.

  91. M. Safi, A. Ghozatloo, N.M. SHARIATY, A. Hamidi, Preparation of MWNT/TiO2 NFs and study of its thermal conductivity and stability, (2014).

  92. Kumar MS, Vasu V, Gopal AV. Thermal conductivity and rheological studies for Cu–Zn HNFs with various basefluids. J Taiw Inst Chem Eng. 2016;66:321–7.

    CAS  Google Scholar 

  93. M.S. Tahat, A.C. Benim. Experimental analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector, in: Defect and diffusion forum, Vol. 374. Trans Tech Publ; 2017, pp. 148–156.

  94. Senthilraja S, Vijayakumar K, Gangadevi R. A comparative study on thermal conductivity of Al2O3/water, CuO/water and Al2O3–CuO/water NFs. Dig J Nanomater Biostruct. 2015;10:1449–588.

    Google Scholar 

  95. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water HNFs using two step method and its thermo physical properties. Colloids Surf A. 2011;388:41–8.

    CAS  Google Scholar 

  96. Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116:3369–75.

    CAS  Google Scholar 

  97. Hamid KA, Azmi W, Nabil M, Mamat R. Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 NFs heat transfer performance under turbulent flow. Int J Heat Mass Transf. 2018;118:617–27.

    CAS  Google Scholar 

  98. Qing SH, Rashmi W, Khalid M, Gupta T, Nabipoor M, Hajibeigy MT. Thermal conductivity and electrical properties of hybrid SiO2-graphene naphthenic mineral oil NF as potential transformer oil. Mater Res Exp. 2017;4:015504.

    Google Scholar 

  99. L. Syam Sundar, A. Sousa, M.K. Singh, Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/water HNFs in a tube with twisted tape inserts under turbulent flow. J Thermal Sci Eng Appl 7 (2015).

  100. Kannaiyan S, Boobalan C, Umasankaran A, Ravirajan A, Sathyan S, Thomas T. Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide HNFs. J Mol Liq. 2017;244:469–77.

    CAS  Google Scholar 

  101. Sundar LS, Singh MK, Ferro M, Sousa AC. Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 HNFs. Int Commun Heat Mass Transfer. 2017;84:1–10.

    Google Scholar 

  102. Sundar LS, Irurueta G, Ramana EV, Singh MK, Sousa A. Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-Co3O4) nanocomposite. Case Stud Therm Eng. 2016;7:66–77.

    Google Scholar 

  103. Sundar LS, Singh MK, Sousa AC. Turbulent heat transfer and friction factor of nanodiamond-nickel HNFs flow in a tube: an experimental study. Int J Heat Mass Transf. 2018;117:223–34.

    CAS  Google Scholar 

  104. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene–alumina HNF in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97.

    CAS  Google Scholar 

  105. Esfe MH, Yan W-M, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG NFs. Int Commun Heat Mass Transfer. 2015;68:248–51.

    Google Scholar 

  106. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous NFs prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39:6415–25.

    CAS  Google Scholar 

  107. Aberoumand S, Jafarimoghaddam A. Tungsten (III) oxide (WO3)–Silver/transformer oil HNF: preparation, stability, thermal conductivity and dielectric strength. Alex Eng J. 2018;57:169–74.

    Google Scholar 

  108. Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO 2 (30: 70%)/EG HNF, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131:1437–47.

    Google Scholar 

  109. Esfe MH, Rejvani M, Karimpour R, Arani AAA. Estimation of thermal conductivity of ethylene glycol-based NF with hybrid suspensions of SWCNT–Al 2 O 3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71.

    CAS  Google Scholar 

  110. Esfe MH, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO 2–MWCNT (85: 15%)–EG HNFs. J Therm Anal Calorim. 2017;128:249–58.

    Google Scholar 

  111. Esfe MH, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water HNF for engineering applications. Appl Therm Eng. 2017;125:673–85.

    Google Scholar 

  112. Esfe MH, Arani AAA, Firouzi M. Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%: 70%) HNF. J Mol Liq. 2017;244:252–61.

    Google Scholar 

  113. Esfe MH, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT-MgO HNF and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10.

    Google Scholar 

  114. Rostamian SH, Biglari M, Saedodin S, Esfe MH. An inspection of thermal conductivity of CuO-SWCNTs HNF versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9.

    CAS  Google Scholar 

  115. Esfe MH, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based NFs with hybrid suspensions of CNTs/Al2Os nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Google Scholar 

  116. Akilu S, Baheta AT, Sharma K. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based HNF with TiO2-CuO/C inclusions. J Mol Liq. 2017;246:396–405.

    CAS  Google Scholar 

  117. Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous NF using NSGA-II coupled with RSM. J Mol Liq. 2017;238:545–52.

    Google Scholar 

  118. Esfe MH, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG HNF: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transfer. 2015;66:100–4.

    Google Scholar 

  119. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG HNFs based on experimental data by selecting optimal artificial neural networks. Physica E. 2017;85:90–6.

    CAS  Google Scholar 

  120. Nadooshan AA, Eshgarf H, Afrand M. Evaluating the effects of different parameters on rheological behavior of NFs: a comprehensive review. Powder Technol. 2018;338:342–53.

    Google Scholar 

  121. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (NFs) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81.

    CAS  Google Scholar 

  122. Izadi F, Ranjbarzadeh R, Kalbasi R, Afrand M. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze NF. Physica E. 2018;98:83–9.

    CAS  Google Scholar 

  123. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M. A comprehensive review on rheological behavior of mono and HNFs: effective parameters and predictive correlations. Int J Heat Mass Transf. 2018;127:997–1012.

    CAS  Google Scholar 

  124. Li Y, Kalbasi R, Nguyen Q, Afrand M. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol NF under different temperatures: an experimental study. Powder Technol. 2020;367:464–73.

    CAS  Google Scholar 

  125. Shahsavani E, Afrand M, Kalbasi R. Using experimental data to estimate the heat transfer and pressure drop of non-Newtonian NF flow through a circular tube: applicable for use in heat exchangers. Appl Therm Eng. 2018;129:1573–81.

    CAS  Google Scholar 

  126. Shahsavani E, Afrand M, Kalbasi R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes. J Therm Anal Calorim. 2018;131:1177–85.

    CAS  Google Scholar 

  127. Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of NFs of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.

    CAS  Google Scholar 

  128. Alphonse P, Bleta R, Soules R. Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. J Colloid Interface Sci. 2009;337:81–7.

    PubMed  CAS  Google Scholar 

  129. Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P. Preparation, characterization, and rheological properties of graphene–glycerol NFs. Chem Eng J. 2013;231:365–72.

    CAS  Google Scholar 

  130. U. Ojha, S. Das, S. Chakraborty. Stability, pH and viscosity relationships in zinc oxide based NFs subject to heating and cooling cycle. J Mat Sci Eng 4 (2010).

  131. Dardan E, Afrand M, Isfahani AM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    CAS  Google Scholar 

  132. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of HNFs made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Thermal Fluid Sci. 2016;79:231–7.

    CAS  Google Scholar 

  133. Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid concentrations. Exp Thermal Fluid Sci. 2017;80:384–90.

    Google Scholar 

  134. Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-engine oil HNFs and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81.

    CAS  Google Scholar 

  135. Zareie A, Akbari M. Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: an experimental study. J Mol Liq. 2017;230:408–14.

    CAS  Google Scholar 

  136. Nadooshan AA, Esfe MH, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Physica E. 2017;92:47–544.

    Google Scholar 

  137. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG HNF: an experimental study. Exp Thermal Fluid Sci. 2016;77:38–44.

    CAS  Google Scholar 

  138. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Thermal Fluid Sci. 2016;76:221–7.

    CAS  Google Scholar 

  139. Esfe MH, Afrand M, Yan W-M, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transfer. 2016;76:133–8.

    Google Scholar 

  140. Esfe MH, Rostamian H, Sarlak MR. A novel study on rheological behavior of ZnO-MWCNT/10w40 NF for automotive engines. J Mol Liq. 2018;254:406–13.

    Google Scholar 

  141. Esfe MH, Arani AAA, Madadi MR, Alirezaie A. A study on rheological characteristics of hybrid nano-lubricants containing MWCNT-TiO2 nanoparticles. J Mol Liq. 2018;260:229–36.

    Google Scholar 

  142. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol HNF: experimental study. Physica E. 2016;84:564–70.

    CAS  Google Scholar 

  143. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid concentration on viscosity of SiO2-MWCNTs/SAE40 HNF as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–544.

    CAS  Google Scholar 

  144. Gulzar O, Qayoum A, Gupta R. Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 therminol-55 NFs for concentrating solar collectors. Powder Technol. 2019;352:436–44.

    CAS  Google Scholar 

  145. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian NF using experimental data. Phys A. 2019;525:741–51.

    CAS  Google Scholar 

  146. Santos L, Chartier T, Pagnoux C, Baumard J, Santillii C, Pulcinelli SH, Larbot A. Tin oxide nanoparticle formation using a surface modifying agent. J Eur Ceram Soc. 2004;24:3713–21.

    CAS  Google Scholar 

  147. Kim JH, Hong YC, Uhm HS. Synthesis of oxide nanoparticles via microwave plasma decomposition of initial materials. Surf Coat Technol. 2007;201:5114–200.

    CAS  Google Scholar 

  148. El-Eskandarany MS. Mechanical alloying: For fabrication of advanced engineering materials. Press of Mississippi: Univ; 2013.

    Google Scholar 

  149. Chin P, Ding J, Yi J, Liu B. Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing. J Alloy Compd. 2005;390:255–60.

    CAS  Google Scholar 

  150. Suciu C, Gagea L, Hoffmann A, Mocean M. Sol–gel production of zirconia nanoparticles with a new organic precursor. Chem Eng Sci. 2006;61:7831–5.

    CAS  Google Scholar 

  151. Epifani M, Melissano E, Pace G, Schioppa M. Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes. J Eur Ceram Soc. 2007;27:115–23.

    CAS  Google Scholar 

  152. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed NFs. J Phys Chem C. 2011;115:8527–33.

    CAS  Google Scholar 

  153. Nine MJ, Munkhbayar B, Rahman MS, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater Chem Phys. 2013;141:636–42.

    CAS  Google Scholar 

  154. Baby TT, Ramaprabhu S. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed NF. Nanoscale. 2011;3:2208–14.

    PubMed  CAS  Google Scholar 

  155. L.F. Chen, M. Cheng, D.J. Yang, L. Yang. Enhanced thermal conductivity of NF by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. In: Applied mechanics and materials, Vol. 548. Trans Tech Publ; 2014, pp. 118–123.

  156. Paul G, Philip J, Raj B, Das PK, Manna I. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed NF prepared by a two-step process. Int J Heat Mass Transf. 2011;54:3783–8.

    CAS  Google Scholar 

  157. Selvakumar P, Suresh S. Use of Al2O3–Cu/Water HNF in an electronic heat sink. IEEE Trans Compon Pack Manuf Technol. 2012;2:1600–7.

    CAS  Google Scholar 

  158. Aravind SJ, Ramaprabhu S. Graphene–multiwalled carbon nanotube-based NFs for improved heat dissipation. RSC Adv. 2013;3:4199–206.

    CAS  Google Scholar 

  159. Han Z, Yang B, Kim S, Zachariah M. Application of hybrid sphere/carbon nanotube particles in NFs. Nanotechnology. 2007;18:105701.

    Google Scholar 

  160. Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A. Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth. 1978;45:495–500.

    CAS  Google Scholar 

  161. Esfe MH, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG NF at various temperatures and different solid concentrations. Exp Thermal Fluid Sci. 2014;55:1–5.

    Google Scholar 

  162. Li Y, Tung S, Schneider E, Xi S. A review on development of NF preparation and characterization. Powder Technol. 2009;196:89–101.

    CAS  Google Scholar 

  163. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer Int J. 1998;11:151–70.

    CAS  Google Scholar 

  164. Shende R, Sundara R. Nitrogen doped hybrid carbon based composite dispersed NFs as working fluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells. 2015;140:9–16.

    CAS  Google Scholar 

  165. Sundar LS, Sharma K, Naik M, Singh MK. Empirical and theoretical correlations on viscosity of NFs: a review. Renew Sustain Energy Rev. 2013;25:670–86.

    CAS  Google Scholar 

  166. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water HNFs. Int Commun Heat Mass Transfer. 2014;52:73–83.

    CAS  Google Scholar 

  167. M. Wagener, B. Murty, B. Günther. Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids. MRS Online Proceedings Library Archive, 457 (1996).

  168. Zafarani-Moattar MT, Majdan-Cegincara R. Stability, rheological, magnetorheological and volumetric characterizations of polymer based magnetic NFs. Colloid Polym Sci. 2013;291:1977–87.

    CAS  Google Scholar 

  169. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV. Thermal conductivity and particle agglomeration in alumina NFs: experiment and theory. Phys Rev E. 2007;76:061203.

    Google Scholar 

  170. Hwang Y, Lee J-K, Lee J-K, Jeong Y-M, Cheong S-I, Ahn Y-C, Kim SH. Production and dispersion stability of nanoparticles in NFs. Powder Technol. 2008;186:145–53.

    CAS  Google Scholar 

  171. Xuan Y, Li Q. Heat transfer enhancement of NFs. Int J Heat Fluid Flow. 2000;21:58–64.

    CAS  Google Scholar 

  172. Tanvir S, Qiao L. Surface tension of NF-type fuels containing suspended nanomaterials. Nanoscale Res Lett. 2012;7:1–10.

    Google Scholar 

  173. Sidik NAC, Mohammed H, Alawi OA, Samion S. A review on preparation methods and challenges of NFs. Int Commun Heat Mass Transfer. 2014;54:115–25.

    CAS  Google Scholar 

  174. Ilyas SU, Pendyala R, Marneni N. Preparation, sedimentation, and agglomeration of NFs. Chem Eng Technol. 2014;37:2011–21.

    CAS  Google Scholar 

  175. Kim J-K, Jung JY, Kang YT. Absorption performance enhancement by nano-particles and chemical surfactants in binary NFs. Int J Refrig. 2007;30:50–7.

    CAS  Google Scholar 

  176. Farbod M, Ahangarpour A. Improved thermal conductivity of Ag decorated carbon nanotubes water based NFs. Phys Lett A. 2016;380:4044–8.

    CAS  Google Scholar 

  177. Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based NFs containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50:3071–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash karimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshgarf, H., Kalbasi, R., Maleki, A. et al. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim 144, 1959–1983 (2021). https://doi.org/10.1007/s10973-020-09998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09998-w

Keywords

Navigation