Skip to main content
Log in

Joule heating in mixed convective peristalsis of Sisko nanomaterial

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

No doubt the nanomaterial has superior thermophysical characteristics when compared with traditional fluid in numerous engineering and biological phenomena. Here, model is constructed for mixed convective peristaltic motion in the presence of Joule heating. Analysis has been organized for Sisko fluid. Brownian motion and thermophoresis are used to examine the nanomaterial effects. Velocity and thermal slip conditions are utilized. Zero mass flux condition is imposed. Small Reynolds number and large wavelength arguments are employed. Governing problem is nonlinear in terms of both differential equation and boundary conditions. Numerical solution to incoming nonlinear problem is computed. The solutions for velocity, temperature, concentration and pressure gradient are examined for the influential variables. It represents that concentration of nanomaterial rapidly enhances for higher N \(_{{\rm t}}\). Concentration of nanomaterial against Brinkman number is increased throughout the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

U, V (m s−1):

Components of velocity

μ f (kg m−1s−1):

Dynamic viscosity of water

ρ f (kg m−3):

Density of water

K f (kg m K−1s−3):

Thermal conductivity of water

B 0 (Am−1):

Magnetic field strength

G (m s−2):

Gravity

N b :

Non-dimensional Brownian motion parameter

M:

Non-dimensional Hartman number

G T :

Non-dimensional thermal Grashof number

ɵ:

Non-dimensional temperature

σ :

Non-dimensional velocity slip

dp/dx :

Non-dimensional pressure gradient

T (K):

Temperature of fluid

C p (m2 s−2 K−1):

Specific heat of fluid

P (Nm(Pa)):

Pressure

σ nf (kg−1 m−3 s3A2):

Electrical conductivity of nanofluid

σ 1 (kg−1 m  s2):

Velocity slip coefficient

C (Kg m−3):

Concentration of nanoparticles

N T :

Non-dimensional thermophoresis parameter

m:

Non-dimensional Hall number

G C :

Non-dimensional concentration of Grashof number

\(\varphi\) :

Non-dimensional concentration

γ :

Non-dimensional thermal slip

Br:

Non-dimensional Brinkman number

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng. Div. 1995;231:99–105.

    CAS  Google Scholar 

  2. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J. Mol. Liquids. 2017;234:324–9.

    Article  CAS  Google Scholar 

  3. Assael MJ, Antoniadis KD, Wakeham WA, Zhang X. Potential applications of nanofluids for heat transfer. Int J Heat Mass Transf. 2019;138:597–607.

    Article  CAS  Google Scholar 

  4. Sezer N, Atieh MA, Koc M. A comprehensive review on synthesis, stability, thermophysical properties and characterization of nanofluid. Powder Technol. 2019;344:404–31.

    Article  CAS  Google Scholar 

  5. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy-Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2019;136:2087–95.

    Article  CAS  Google Scholar 

  6. Rehman KU, Malik MY. On Lie symmetry mechanics for Navier–Stokes equations unified with non-Newtonian fluid model: a classical directory. Physica A. 2019;535:122469.

    Article  Google Scholar 

  7. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy-Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2019;136:1769–79.

    Article  CAS  Google Scholar 

  8. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135:305–23.

    Article  CAS  Google Scholar 

  9. Rehman KU. Magnetized and non-magnetized two layer liquids: a Lie symmetry analysis. J Mol Liq. 2019;292:111393.

    Article  CAS  Google Scholar 

  10. Hayat T, Aziz A, Muhammad T, Alsaedi A. Significance of homogeneous-heterogeneous reactions in Darcy– Forchheimer three-dimensional rotating flow of carbon nanotubes. J Therm Anal Calorim. 2020;139:183–95.

    Article  CAS  Google Scholar 

  11. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  12. Nayak RK, Bhattacharyya S, Pop I. Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure. Int. J. Heat Mass Transfer. 2018;125:908–19.

    Article  CAS  Google Scholar 

  13. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50:2002–18.

    Article  CAS  Google Scholar 

  14. Gavrilova AA, Rudyak VY. Reynolds-averaged modeling of turbulent flows of power-law fluids. J. Non-Newtonian Fluid Mechanics. 2016;227:45–55.

    Article  Google Scholar 

  15. Sisko AW. The flow of lubricating greases. Ind Eng Chem. 1958;50:1789–92.

    Article  CAS  Google Scholar 

  16. Rehman KU, Mahmood R, Kousar N, Bilal S, Zehra I. On magnetized liquid stream statistics in grooved channel: a finite element visualization. Physica A. 2019;535:122463.

    Article  Google Scholar 

  17. Muhammad K, Hayat T, Alsaedi A Ahmad B. Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs + water) and hybrid nanofluid (CNTs + CuO + water). Journal of Thermal Analysis and Calorimetry, (2020).

  18. Carreau PJ. Rheological equations from molecular network theories. J Rheol. 1972;16:99–127.

    CAS  Google Scholar 

  19. Grotberg JB, Jensen OE. Biofluid mechanics and flexible tubes. Annu Rev Fluid Mech. 2004;36:121–47.

    Article  Google Scholar 

  20. Gijsen FJH, Allanic E, Vosse FNVD, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a curved tube. J Biomech. 1999;32:705–13.

    Article  CAS  Google Scholar 

  21. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.

    Article  CAS  Google Scholar 

  22. Yamatsuta E, Beh SP, Uesugi K, Tsujimura H, Morishima K. A micro peristaltic pump using an optically controllable bioactuator. Engineering. 2019;5:580–5.

    Article  CAS  Google Scholar 

  23. Zeeshan A, Fatima A, Khalid F, Bhatti MM. Interaction between blood and solid particles propagating through a capillary with slip effects. Microvasc Res. 2018;119:38–46.

    Article  CAS  Google Scholar 

  24. Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magnetism Mag Mater. 2012;324:903–15.

    Article  CAS  Google Scholar 

  25. Farooq S, Khan MI, Hayat T, Waqas M, Alsaedi A. Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. J Mol Liq. 2019;285:314–22.

    Article  CAS  Google Scholar 

  26. Abbasi FM, Shanakhat I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magnetism Mag Mater. 2019;474:434–41.

    Article  CAS  Google Scholar 

  27. Hayat T, Ahmed B, Alsaedi A, Abbasi FM. Numerical study for peristalsis of Carreau-Yasuda nanomaterial with convective and zero mass flux condition. Result Phys. 2018;8:1168–77.

    Article  Google Scholar 

  28. Hayat T, Nawaz S, Alsaedi A. Entropy generation in peristalsis with different shapes of nanomaterial. J Mol Liq. 2017;248:447–58.

    Article  CAS  Google Scholar 

  29. Hayat T, Aslam N, Khan MI, Khan MI, Alsaedi A. Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel. J Mol Liq. 2019;275:599–615.

    Article  CAS  Google Scholar 

  30. Asghar Z, Ali N, Sajid M, Bég OA. Magnetic microswimmers propelling through biorheological liquid bounded within an active channel. J Magnetism Mag Mater. 2019;486:165283.

    Article  CAS  Google Scholar 

  31. Ali N, Sajid M, Javed T, Abbas Z. Heat transfer analysis of peristaltic flow in a curved channel. Int. J Heat and Mass Transfer. 2017;53:3319–25.

    Article  Google Scholar 

  32. Ahmed B, Hayat T, Alsaedi A and Abbasi FM. Entropy generation analysis for peristaltic motion of Carreau-Yasuda nanomaterial. Physica Scripta. (2019).

  33. Hayat T, Ahmed B, Abbasi FM, Ahmad B. Mixed convective peristaltic flow of carbon nanotubes submerged in water using different thermal conductivity models. Comput Methods Programs Biomed. 2016;135:141–50.

    Article  CAS  Google Scholar 

  34. Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS and Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Thermal Analysis and Calorimetry. (2019).

  35. Ahmed B, Hayat T, Alsaedi A and Abbasi FM. Entropy generation in peristalsis with iron oxide. J Thermal Analysis and Calorimetry. (2019).

  36. Shehzad SA, Abbasi FM, Hayat T, Alsaadi F. MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects. PLoS ONE. 2014;9:e111417.

    Article  Google Scholar 

  37. Noreen S, Kousar T. Hall ion slip and Ohmic heating effects in thermally active sinusoidal channel. Propulsion Power Res. 2019;8:263–73.

    Article  Google Scholar 

  38. Abbasi FM, Hayat T, Ahmad B. Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq. 2015;207:248–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, B., Hayat, T., Alsaedi, A. et al. Joule heating in mixed convective peristalsis of Sisko nanomaterial. J Therm Anal Calorim 146, 1–10 (2021). https://doi.org/10.1007/s10973-020-09997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09997-x

Keywords

Navigation