Skip to main content
Log in

Pool boiling performance of aqueous Al2O3 and TiO2 nanofluids on a horizontally placed flat polished surface: an experimental investigation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents an experimental investigation on the pool boiling heat transfer of water containing Al2O3 and TiO2 nanoparticles at 0.01%, 0.05%, 0.1%, 0.5% and 1% mass fractions at ambient pressure. A horizontal flat polished stainless steel plate was chosen as the boiling surface. Significant improvements in the boiling heat transfer coefficient and critical heat flux were recorded up to 0.1%. However, a decrease in heat transfer performance was observed at other concentrations. The surface wettability of nanofluids was improved as the static contact angle on the boiling surface decreased with an increase in mass fraction. The roughness of the boiling surface decreased due to the development of a layer of nanoparticles on it. Al2O3–water nanofluids showed better boiling performance than TiO2–water nanofluids. Finally, the present experimental outcomes are further compared and elucidated with the published reports and developed theories. This may be effective for a better understanding of pool boiling phenomena in nanofluids.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AC:

Alternating current

BHTC:

Boiling heat transfer coefficient

CHF:

Critical heat flux

CNT:

Carbon nanotubes

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscopy

SS:

Stainless steel

A :

Area (m2)

c :

Specific heat (J kg−1 K−1)

C sf :

Experimental constant

d :

Diameter (m)

f b :

Bubble departure frequency (s−1)

g :

Acceleration due to gravity (ms−2)

h :

Heat transfer coefficient (W m−2 K−1)

h fg :

Enthalpy of vaporization (J kg−1)

I :

Electric current (A)

m :

Mass (kg)

n a :

Nucleation site density (site m−2)

N c :

Number of microcavities per unit surface area

P :

Parameter

Pr:

Prandtl number

R :

Dimension less roughness parameter

R a :

Surface roughness (μm)

q :

Heat flux (W m−2)

T :

Temperature (°C)

U :

Uncertainty

V :

Voltage (V)

X :

Independent variables

ϕ :

Mass fraction (%)

γ :

Surface force (N)

λ :

Wettability parameter

θ :

Contact angle (°)

μ :

Viscosity (mPa s)

ρ :

Density (kg m−3)

δ :

Macrolayer thickness (m)

σ :

Surface tension (Nm−1)

AT:

Adhesion-tension

b:

Bulk

d:

Difference

bf:

Basefluid

f:

Fluid

nf:

Nanofluid

np:

Nanoparticles

r:

Ratio

sat:

Saturation

w:

Wall

n :

Experimental constant

References

  1. Choi SUS. Nanofluids: from vision to reality through research. J Heat Transf. 2009;131(3):033106.

    Article  Google Scholar 

  2. Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf. 2003;46(5):851–62.

    Article  CAS  Google Scholar 

  3. Bang IC, Chang SH. Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf. 2005;48(12):2407–19.

    Article  CAS  Google Scholar 

  4. Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res. 2005;7(2):265–74. https://doi.org/10.1007/s11051-005-3478-9.

    Article  CAS  Google Scholar 

  5. Witharana S, Palabiyik I, Musina Z, Ding Y. Stability of glycol nanofluids—the theory and experiment. Powder Technol. 2013;239:72–7.

    Article  CAS  Google Scholar 

  6. He Y, Li H, Hu Y, Wang X, Zhu J. Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nanofluids in a cylindrical vessel. Int J Heat Mass Transf. 2016;98:611–5.

    Article  CAS  Google Scholar 

  7. Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica–water nano-fluids. Int J Heat Mass Transf. 2004;47(2):407–11.

    Article  CAS  Google Scholar 

  8. Chopkar M, Das AK, Manna I, Das PK. Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool. Heat Mass Transf. 2008;44(8):999–1004.

    Article  CAS  Google Scholar 

  9. Coursey JS, Kim J. Nanofluid boiling: the effect of surface wettability. Int J Heat Fluid Flow. 2008;29(6):1577–85.

    Article  CAS  Google Scholar 

  10. Kwark SM, Kumar R, Moreno G, Yoo J, You SM. Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf. 2010;53(5–6):972–81.

    Article  CAS  Google Scholar 

  11. Shahmoradi Z, Etesami N, Esfahany MN. Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int Commun Heat Mass Transf. 2013;47:113–20.

    Article  CAS  Google Scholar 

  12. Kim SJ, Bang IC, Buongiorno J, Hu LW. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50(19–20):4105–16.

    Article  CAS  Google Scholar 

  13. Kathiravan R, Kumar R, Gupta A, Chandra R. Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf. 2010;53(9–10):1673–81.

    Article  CAS  Google Scholar 

  14. Kathiravan R, Kumar R, Gupta A, Chandra R, Jain PK. Pool boiling characteristics of multiwalled carbon nanotube (CNT) based nanofluids over a flat plate heater. Int J Heat Mass Transf. 2011;54(5–6):1289–96.

    Article  CAS  Google Scholar 

  15. Dadjoo M, Etesami N, Esfahany MN. Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl Therm Eng. 2017;124:353–61. https://doi.org/10.1016/j.applthermaleng.2017.06.025.

    Article  CAS  Google Scholar 

  16. Salehi H, Hormozi F. Prediction of Al2O3–water nanofluids pool boiling heat transfer coefficient at low heat fluxes by using response surface methodology. J Therm Anal Calorim. 2019;137(3):1069–82. https://doi.org/10.1007/s10973-018-07993-w.

    Article  CAS  Google Scholar 

  17. Akbari A, Alavi Fazel SA, Maghsoodi S, Kootenaei AS. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids. J Therm Anal Calorim. 2019;135(1):697–711. https://doi.org/10.1007/s10973-018-7182-2.

    Article  CAS  Google Scholar 

  18. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci. 2020;147:106131. https://doi.org/10.1016/j.ijthermalsci.2019.106131.

    Article  CAS  Google Scholar 

  19. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1687–4110.

    Google Scholar 

  20. Hwang W-K, Choy S, Song SL, Lee J, Hwang DS, Lee K-Y. Enhancement of nanofluid stability and critical heat flux in pool boiling with nanocellulose. Carbohyd Polym. 2019;213:393–402.

    Article  CAS  Google Scholar 

  21. Varenne F, Botton J, Merlet C, Vachon J-J, Geiger S, Infante IC, et al. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surf A. 2015;486:218–31.

    Article  CAS  Google Scholar 

  22. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17–18):4051–68.

    Article  CAS  Google Scholar 

  23. Shah J, Ranjan M, Davariya V, Gupta SK, Sonvane Y. Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids. Appl Nanosci. 2017;7(8):803–13.

    Article  CAS  Google Scholar 

  24. Choi C, Kim M. Wettability effects on heat transfer. New York: Intechopen; 2011.

    Book  Google Scholar 

  25. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11(7):36–42.

    Google Scholar 

  26. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. Cambridge: MIT Division of Industrial Corporation; 1951.

    Google Scholar 

  27. Kim SJ, Bang IC, Buongiorno J, Hu LW. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett. 2006;89(15):153107.

    Article  Google Scholar 

  28. Wenzel RN. Surface roughness and contact angle. J Phys Chem. 1949;53(9):1466–7.

    Article  CAS  Google Scholar 

  29. Wang CH, Dhir VK. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. ASME J Heat Transf. 1993;115(3):659–69. https://doi.org/10.1115/1.2910737.

    Article  CAS  Google Scholar 

  30. Ham J, Cho H. Theoretical analysis of pool boiling characteristics of Al2O3 nanofluid according to volume concentration and nanoparticle size. Appl Therm Eng. 2016;108:158–71. https://doi.org/10.1016/j.applthermaleng.2016.07.058.

    Article  CAS  Google Scholar 

  31. Haramura Y, Katto Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int J Heat Mass Transf. 1983;26(3):389–99.

    Article  Google Scholar 

  32. Sadasivan P, Chappidi PR, Unal C, Nelson RA. Possible mechanisms of macrolayer formation. Int Commun Heat Mass Transfer. 1992;19(6):801–15.

    Article  CAS  Google Scholar 

  33. Hibiki T, Ishii M. Active nucleation site density in boiling systems. Int J Heat Mass Transf. 2003;46(14):2587–601.

    Article  CAS  Google Scholar 

  34. Abdollahi A, Salimpour MR, Etesami N. Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl Therm Eng. 2017;111:1101–10.

    Article  CAS  Google Scholar 

  35. Raveshi MR, Keshavarz A, Mojarrad MS, Amiri S. Experimental investigation of pool boiling heat transfer enhancement of alumina–water–ethylene glycol nanofluids. Exp Thermal Fluid Sci. 2013;44:805–14.

    Article  CAS  Google Scholar 

  36. Hu Y, Liu Z, He Y. Effects of SiO2 nanoparticles on pool boiling heat transfer characteristics of water based nanofluids in a cylindrical vessel. Powder Technol. 2018;327:79–88.

    Article  CAS  Google Scholar 

  37. Huang C-K, Lee C-W, Wang C-K. Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf. 2011;54(23–24):4895–903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors cordially acknowledge the financial support provided by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Govt. of India (Sanction No. 39/14/04/2017-BRNS/34301). The authors are also thankful for Dr. Ashok Sahoo and Dr. Ramanuj Kumar of School of Mechanical Engineering, KIIT, for their valuable inputs in surface roughness measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Chandra Mishra.

Ethics declarations

Conflict of interest

The authors do not share any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Mishra, P.C. & Chaudhuri, P. Pool boiling performance of aqueous Al2O3 and TiO2 nanofluids on a horizontally placed flat polished surface: an experimental investigation. J Therm Anal Calorim 146, 415–433 (2021). https://doi.org/10.1007/s10973-020-09995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09995-z

Keywords

Navigation