Skip to main content
Log in

A novel approach to the synthesis of semiorganic ammonium hydrogen oxalate oxalic acid dihydrate single crystal and its characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A different approach used in the synthesis of ammonium hydrogen oxalate oxalic acid dihydrate (NH4H3(C4O8)·2H2O) single crystals is presented. The crystals are synthesized using solvent evaporation technique. The analysis of the synthesized NH4H3(C4O8)·2H2O single crystals has been carried out through measurements such as single-crystal X-ray diffraction (SCXRD), powder XRD, UV–Vis and photoluminescence spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis (TG–DTA), Vickers microhardness measurements and current versus voltage (IV) characteristics. The evaluation of the molecular structure of the crystals using SCXRD shows that they belong to the triclinic crystal system with space group P-1. The structural properties of the crystals are also evaluated using powder XRD measurements on their finely crushed powder. These measurements corroborate the results of SCXRD and confirm the triclinic system of the crystals. The optical properties like absorbance and emission of these crystals are determined using UV–Vis and photoluminescence spectroscopy, respectively. These measurements show that the crystals exhibit substantial emission in the blue region. The thermal stability and the decomposition mechanism of the crystals is studied using TG–DTA analysis. The mechanical strength of the crystals is determined using Vickers microhardness technique. The photoresponse of the NH4H3(C4O8)·2H2O crystals is analyzed from light-dependent IV characteristics, and it is observed that the crystals exhibit photoresistive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Garmire E. Nonlinear optics in daily life. Opt Express. 2013;21:30532–44.

    Article  PubMed  CAS  Google Scholar 

  2. Mahendra K, Udayashankar NK. Investigation on mechanical and temperature dependent electrical properties of potassium hydrogen oxalate oxalic acid dihydrate single crystal. Phys Lett A. 2020;384:126475.

    Article  CAS  Google Scholar 

  3. Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez JM, Pesquera L, et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express. 2012;20:3241.

    Article  CAS  PubMed  Google Scholar 

  4. Akiyama T, Kuwatsuka H, Simoyama T, Nakata Y, Mukai K, Sugawara M, et al. Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J Quantum Electron. 2001;37:1059–65.

    Article  CAS  Google Scholar 

  5. Feringa BL, Jager WF, de Lange B. Organic materials for reversible optical data storage. Tetrahedron. 1993;49:8267–310.

    Article  CAS  Google Scholar 

  6. Fernandes JM, Swetha C, Appalnaidu E, Navamani K, Rao VJ, Satyanarayan MN, et al. Optoelectronic properties of novel alkyl-substituted Triphenylamine derivatives. Org Electron. 2017;47:24–34.

    Article  CAS  Google Scholar 

  7. Mendiratta S, Lee C-H, Usman M, Lu K-L. Metal–organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials. Sci Technol Adv Mater. 2015;16:054204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. New GHC. Nonlinear optics: the first 50 years. Contemp Phys. 2011;52:281–92.

    Article  Google Scholar 

  9. Stash AI, Chen Y-S, Kovalchukova OV, Tsirelson VG. Electron density, electrostatic potential, and spatial organization of ammonium hydrooxalate oxalic acid dihydrate heteromolecular crystal from data of diffraction experiment at 15 K using synchrotron radiation and theoretical calculations. Russ Chem Bull Int Ed. 2013;62:1752–63.

    Article  CAS  Google Scholar 

  10. Nalwa HS. Organic materials for third-order nonlinear optics. Adv Mater. 1993;5:341–58.

    Article  CAS  Google Scholar 

  11. Nalwa HS. Organometallic materials for nonlinear optics. Appl Organomet Chem. 1991;5:349–77.

    Article  CAS  Google Scholar 

  12. Bordui PF, Fejer MM. Inorganic crystals for nonlinear optical frequency conversion. Annu Rev Mater Sci. 1993;23:321–79.

    Article  CAS  Google Scholar 

  13. Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, et al. Recent progress in metal–organic complexes for optoelectronic applications. Chem Soc Rev. 2014;43:3259–302.

    Article  CAS  PubMed  Google Scholar 

  14. Boopathi K, Ramasamy P. Synthesis, growth and characterization of a new metal–organic NLO material: dibromo bis (l-proline) Cd (II). J Mol Struct. 2015;1080:37–43.

    Article  CAS  Google Scholar 

  15. Mahendra K, Udayashankar NK. Growth and comparative studies on oxalic acid dihydrate, potassium oxalate hydrate and potassium hydrogen oxalate oxalic acid dihydrate single crystals. J Phys Chem Solids. 2019;138:109263.

    Article  CAS  Google Scholar 

  16. Amudha K, Latha Mageshwari PS, Mohan Kumar R, Umarani PR. Selective enhancement of second and third-order nonlinear optical properties of newly synthesised trisglycine epsomite single crystal. Mater Lett. 2018;223:33–6.

    Article  CAS  Google Scholar 

  17. Nivetha K, Kalainathan S, Yamada M, Kondo Y, Hamada F. Investigation on the growth, structural, HOMO–LUMO and optical studies of 1-ethyl-2-[2-(4-hydroxy-phenyl)-vinyl]-pyridinium iodide (HSPI): a new stilbazolium derivative for third-order NLO applications. RSC Adv. 2016;6:35977–90.

    Article  CAS  Google Scholar 

  18. Brütting W. Introduction to the physics of organic semiconductors. Phys Org Semicond [Internet]. Wiley-Blackwell; 2006 https://onlinelibrary.wiley.com/doi/abs/10.1002/3527606637.ch. Accessed 5 Nov 2018.

  19. Mahendra K, Bhat KS, Nagaraja HS, Udayashankar NK. Modulations of physio-chemical and electronic properties of metalorganic KHO single crystals through Co(OH)2 nanoparticles doping. J Mater Sci: Mater Electron. 2019;30:12566–76.

    CAS  Google Scholar 

  20. Anis M, Hussaini SS, Hakeem A, Shirsat MD, Muley GG. Synthesis, growth and optical studies of novel organometallic NLO crystal: calcium bis-thiourea chloride. Optik. 2016;127:2137–42.

    Article  CAS  Google Scholar 

  21. Dong X, Duo-Rong Y, Nan Z, Wen-Bo H, Ming-Guo L, Suo-Ying S, et al. Study of properties and structural features of some new organic and organometallic nonlinear optical crystals. J Phys Appl Phys. 1993;26:B230–5.

    Article  Google Scholar 

  22. Mahendra K, Kumar HKT, Udayashankar NK. Enhanced structural, optical, thermal, mechanical and electrical properties by a noval approach (nanoparticle doping) on ferroelectric triglycine sulphate single crystal. Appl Phys A. 2019;125:228.

    Article  CAS  Google Scholar 

  23. Mahendra K, Nayak KK, Fernandes BJ, Udayashankar NK. Gamma irradiation effect on structural, optical and electrical properties of organometallic potassium hydrogen oxalate oxalic acid dihydrate single crystal. J Mater Sci: Mater Electron. 2018;29:18905–12.

    CAS  Google Scholar 

  24. Suresh S. Studies on the optical and dielectric properties of a zinc thiourea chloride NLO single crystal. Opt Int J Light Electron Opt. 2014;125:1223–6.

    Article  CAS  Google Scholar 

  25. Dalal J, Kumar B. Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal. Opt Mater. 2016;51:139–47.

    Article  CAS  Google Scholar 

  26. Chandran S, Paulraj R, Ramasamy P. Crystal growth, structural, optical, thermal and dielectric properties of lithium hydrogen oxalate monohydrate single crystal. Opt Mater. 2017;73:154–62.

    Article  CAS  Google Scholar 

  27. Vasudevan P, Gokul Raj S, Sankar S. Synthesis and characterization of nonlinear optical l-arginine semi-oxalate single crystal. Spectrochim Acta A Mol Biomol Spectrosc. 2013;106:210–5.

    Article  CAS  PubMed  Google Scholar 

  28. Yadav H, Sinha N, Kumar B. Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals. Mater Res Bull. 2015;64:194–9.

    Article  CAS  Google Scholar 

  29. Mahendra K, Udayashankar NK. A study on structural, optical, thermal and electrical properties of the amaranth dye-doped KHOOD single crystal. Int J Mod Phys B. 2019;384:2050002.

    Google Scholar 

  30. Bangera KV, Mohan Rao P. Growth and characterization of barium copper oxalate single crystals in gels. Bull Mater Sci. 1992;15:339–47.

    Article  CAS  Google Scholar 

  31. Jerusha E, Shahil Kirupavathy S, Vinolia M, Vinitha G. Changeover in the third order NLO behaviour of p-nitrophenol doped ammonium hydrogen oxalate hemihydrate crystals. J Mater Sci: Mater Electron. 2018;29:19532–43.

    CAS  Google Scholar 

  32. Bhuvaneswari R, Divya Bharathi M, Anbalagan G, Chakkaravarthi G, Murugesan KS. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), NBO, HOMO and LUMO analysis of morpholinium oxalate by density functional method. J Mol Struct. 2018;1173:188–95.

    Article  CAS  Google Scholar 

  33. D’Antonio MC, Torres MM, Palacios D, González-Baró AC, Baran EJ. Vibrational spectra of the two hydrates of strontium oxalate. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:486–9.

    Article  PubMed  CAS  Google Scholar 

  34. Ahlam MA, Ravishankar MN, Vijayan N, Govindaraj G, Siddaramaiah GnanaPrakash AP. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2012;278:26–33.

    Article  CAS  Google Scholar 

  35. D’Antonio MC, Mancilla N, Wladimirsky A, Palacios D, González-Baró AC, Baran EJ. Vibrational spectra of magnesium oxalates. Vib Spectrosc. 2010;53:218–21.

    Article  CAS  Google Scholar 

  36. Tonannavar J, Deshpande G, Yenagi J, Patil SB, Patil NA, Mulimani BG. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2016;154:20–6.

    Article  CAS  PubMed  Google Scholar 

  37. Edwards HGM, Lewis IR. FT-Raman spectroscopic studies of metal oxalates and their mixtures. Spectrochim Acta Part Mol Spectrosc. 1994;50:1891–8.

    Article  Google Scholar 

  38. Hamdouni M, Agengui L, Walha S, Kabadou A, Ben Salah A. Synthesis and crystal structure of a new mixed alkali oxalate A1 − x(NH4)x(H2C2O4)(HC2O4)(H2O)2 with A = K, Rb. J Chem Crystallogr. 2011;41:1742.

    Article  CAS  Google Scholar 

  39. Arora C, Sharma A, Soni S, Naik Y, Ramarao G. Solid-state reaction of strontium oxalate with uranium oxalate: application of TG. J Therm Anal Calorim. 2016;124:43–9.

    Article  CAS  Google Scholar 

  40. Çılgı GK, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts. J Therm Anal Calorim. 2014;115:2007–20.

    Article  CAS  Google Scholar 

  41. Arora C, Chejara S, Ramarao G, Naik YP. Application of thermogravimetric analysis in study of solid-state reaction between barium oxalate and uranyl oxalate. J Therm Anal Calorim. 2016;124:51–6.

    Article  CAS  Google Scholar 

  42. Vimal G, Mani KP, Jose G, Biju PR, Joseph C, Unnikrishnan NV, et al. Growth and spectroscopic properties of samarium oxalate single crystals. J Cryst Growth. 2014;404:20–5.

    Article  CAS  Google Scholar 

  43. Goel S, Sinha N, Yadav H, Hussain A, Kumar B. Effect of crystal violet dye on the structural, optical, mechanical and piezoelectric properties of ADP single crystal. Mater Res Bull. 2016;83:77–87.

    Article  CAS  Google Scholar 

  44. Senthil K, Kalainathan S, Ruban Kumar A. Bulk size crystal growth, spectral, optical, luminescence, thermal, mechanical, and dielectric properties of organic single crystal. J Therm Anal Calorim. 2014;118:323–31.

    Article  CAS  Google Scholar 

  45. Goel N, Sinha N, Kumar B. Growth and properties of sodium tetraborate decahydrate single crystals. Mater Res Bull. 2013;48:1632–6.

    Article  CAS  Google Scholar 

  46. Ray G, Kumar S, Sinha N, Kumar B. Enhanced dielectric piezo-/ferro-/electric properties of dye doped sodium acid phthalate crystal. Curr Appl Phys. 2017;17:813–9.

    Article  Google Scholar 

  47. Vinothkumar P, Kumar RM, Jayavel R, Bhaskaran A. Synthesis, growth, structural, optical, thermal and mechanical properties of an organic Urea maleic acid single crystals for nonlinear optical applications. Opt Laser Technol. 2016;81:145–52.

    Article  CAS  Google Scholar 

  48. Sivanandan T, Kalainathan S. Study of growth condition and characterization of monothiourea-cadmium sulphate dihydrate single crystals in silica gel. Mater Chem Phys. 2015;168:66–73.

    Article  CAS  Google Scholar 

  49. Amuthambigai C, Mahadevan CK, Sahaya Shajan X. Growth, optical, thermal, mechanical and electrical properties of anhydrous sodium formate single crystals. Curr Appl Phys. 2016;16:1030–9.

    Article  Google Scholar 

  50. Arunkumar A, Ramasamy P. Synthesis, crystal growth and structural characterization of lithium fumarate semi-organic single crystals. Mater Lett. 2014;123:246–9.

    Article  CAS  Google Scholar 

  51. Suresh T, Vetrivel S, Gopinath S, Mullai RU. A new metal-organic nonlinear optical material: l-Asparagine Indium chloride (LAIn) for photonics application. Chin J Phys. 2018;56:2773–81.

    Article  CAS  Google Scholar 

  52. Ramki C, Ezhil Vizhi R. Study on the mechanical properties of potassium sodium hydroxide borate hydrate (KSB) single crystals by using Vickers microhardness tester. Mater Lett. 2018;215:165–8.

    Article  CAS  Google Scholar 

  53. Boopathi K, Babu SM, Jagan R, Ramasamy P. Synthesis, crystal structure and growth of a new inorganic- organic hybrid compound for nonlinear optical applications: aquadiiodo (3-aminopropanoic acid) cadmium (II). J Phys Chem Solids. 2017;111:419–30.

    Article  CAS  Google Scholar 

  54. Ramki C, Ezhil Vizhi R. Growth, optical, electrical and mechanical properties of sodium hydrogen oxalate hydrate (NaHC2O4·H2O) single crystal for NLO applications. Mater Chem Phys. 2017;197:70–8.

    Article  CAS  Google Scholar 

  55. Ashraf IM, Elshaikh HA, Badr AM. Photoconductivity in Tl4S3 layered single crystals. Cryst Res Technol. 2004;39:63–70.

    Article  CAS  Google Scholar 

  56. Stöckmann F. Negative Photoeffekte in Halbleitern. Z Phys. 1955;143:348–56.

    Article  Google Scholar 

  57. Joshi NV. Photoconductivity: art, science and technology. New York: Marcel Dekker; 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mahendra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendra, K., Fernandes, J.M. & Udayashankar, N.K. A novel approach to the synthesis of semiorganic ammonium hydrogen oxalate oxalic acid dihydrate single crystal and its characterization. J Therm Anal Calorim 146, 93–102 (2021). https://doi.org/10.1007/s10973-020-09965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09965-5

Keywords

Navigation