Skip to main content
Log in

Introducing an optimum gas turbine inlet temperature (TIT) based on a 4E analysis: a case study of northeastern Iran

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Determining the maximum temperature of gas turbine is one of the challenges in energy conversion to achieve the suitable performance of gas turbine systems. For this purpose, based on the energy, exergy, environmental, and economic (4E) analyses, the effects of changing turbine inlet temperature (TIT) on a gas turbine power plant in northeastern Iran were studied. The results showed that increasing TIT enhanced net power and efficiency, so that increasing TIT about 10 K enhanced net power by 1.7%. Of course, on the other side, higher TIT increases the NOx emissions and the cost of materials and alloys. Therefore, the results indicated that higher TIT may not be necessarily more suitable. To find an optimal temperature, a price objective function was introduced in which the costs of power generation, net power, efficiency, and environmental taxes were effective. Finally, for the investigated power plant, the optimum TIT of 1328 K was introduced in which the cost of power generation could be minimized by about 0.115 $/kWh.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mousafarash A, Ameri M. Exergy and exergo-economic based analysis of a gas turbine power generation system. J Power Technol. 2013;93:44–51.

    Google Scholar 

  2. Gibson CA, Aghaei Meybodi M, Behnia M. A methodology to compare the economic feasibility of fuel cell-, gas turbine- and microturbine-based combined heat and power systems. Int J Energy Res. 2016;40(7):983–1008.

    Article  Google Scholar 

  3. Mohapatra AK, Sanjay. Analysis of parameters affecting the performance of gas turbines and combined cycle plants with vapor absorption inlet air cooling. Int J Energy Res. 2014;38(2):223–40.

    Article  Google Scholar 

  4. Najjar YSH, Abubaker AM. Using novel compressed-air energy storage systems as a green strategy in sustainable power generation—a review. Int J Energy Res. 2016;40(12):1595–610.

    Article  CAS  Google Scholar 

  5. Bhargava R, Meher-Homji CB. Parametric analysis of existing gas turbines with inlet evaporative and overspray fogging. Vol 4 Turbo Expo 2002, Parts A B [Internet]. 2002;4 A(January 2005):387–401. http://www.scopus.com/inward/record.url?eid=2-s2.0-0037002789&partnerID=tZOtx3y1.

  6. Sanjay Singh O, Prasad BN. Comparative performance analysis of cogeneration gas turbine cycle for different blade cooling means. Int J Therm Sci. 2009;48(7):1432–40.

    Article  CAS  Google Scholar 

  7. Elwekeel FNM, Abdala AMM. Effect of mist cooling technique on exergy and energy analysis of steam injected gas turbine cycle. Appl Therm Eng [Internet]. 2016;98:298–309.

    Article  Google Scholar 

  8. Rice IG. Steam-injected gas turbine analysis: part I — steam rates. Am Soc Mechnical Eng. 1993. https://doi.org/10.1115/93-GT-132.

    Article  Google Scholar 

  9. Athari H, Soltani S, Rosen MA, Mohammad S, Mahmoudi S. Thermodynamic analysis of a power plant integrated with fogging inlet cooling and a biomass gasification. 4th world Sustain forum. 2014.

  10. Athari H, Soltani S, Rosen MA, Gavifekr MK, Morosuk T. Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel. Renew Energy [Internet]. 2016;96:715–26. https://doi.org/10.1016/j.renene.2016.05.010.

    Article  Google Scholar 

  11. Rahman MM, Ibrahim TK, Kadirgama K, Mamat R, Bakar RA. Influence of operation conditions and ambient temperature on performance of gas turbine power plant. Adv Mater Res. 2011;193:3007–13.

    Article  Google Scholar 

  12. Oyedepo SO, Fagbenle RO, Adefila SS, Alam M. Thermoeconomic and thermoenvironomic modeling and analysis of selected gas turbine power plants in Nigeria. Energy Sci Eng. 2015;3(5):423–42.

    Article  Google Scholar 

  13. Ebadi MJ, Gorji-Bandpy M. Exergetic analysis of gas turbine plants. Int J Exergy. 2005;2(1):33–9.

    Article  Google Scholar 

  14. Al- Doori WHAR. Exergy analysis of a gas turbine performance with effect cycle temperatures. IJRRAS. 2012;13(2):549–56.

    Google Scholar 

  15. Sahu MK, Sanjay. Comparative exergoeconomic analysis of basic and reheat gas turbine with air film blade cooling. Energy. 2017;132:60–170.

    Article  Google Scholar 

  16. Sahu MK, Sanjay. Thermoeconomic investigation of basic and intercooled gas turbine based power utilities incorporating air- film blade cooling. J Clean Prod [Internet]. 2018;170:842–56. https://doi.org/10.1016/j.jclepro.2017.09.030.

    Article  Google Scholar 

  17. Choudhary T, Sahu M, Krishna S. Thermodynamic analysis of solid oxide fuel cell gas turbine hybrid system for aircraft power generation. SAE Tech Pap. 2017;(2017-01-2062).

  18. Choudhary T, Sanjay. Science Direct Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle. Int J Hydrog Energy [Internet]. 2017;42(15):10248–63. https://doi.org/10.1016/j.ijhydene.2017.02.178.

    Article  CAS  Google Scholar 

  19. Choudhary T, Sanjay N. Thermodynamic assessment of SOFC- ICGT hybrid cycle: energy analysis and entropy generation minimization. Energy. 2017;134(1 September):1013–28. https://doi.org/10.1016/j.energy.2017.06.064.

    Article  Google Scholar 

  20. Rahman M, Ibrahim TK, Abdalla AN. Thermodynamic performance analysis of gas-turbine power-plant. Int J Phys Sci. 2011;6(14):3539–50.

    Google Scholar 

  21. Choudhary T, Sahu MK, Kumari A, Mohapatra AK, Sanjay. Thermodynamic modeling of blade cooled turboprop engine integrated to solid oxide fuel cell: a concept. SAE Tech Pap. 2018;1–10.

  22. Bolland O, Stadaas JF. Comparative evaluation of combined cycles and gas turbine systems with water injection, steam injection, and recuperation. J Eng Gas Turbines Power [Internet]. 1995;117(1):138–45. https://doi.org/10.1115/1.2812762.

    Article  Google Scholar 

  23. Chiesa P, Macchi E. A thermodynamic analysis of different options to break 60% electric efficiency in combined cycle power plants [Internet]. 987–1002. http://dx.doi.org/10.1115/GT2002-30663.

  24. Dechamps PJ. Advanced combined cycle alternatives with the latest gas turbines. J Eng Gas Turbines Power [Internet]. 1998;120(2):350–7. https://doi.org/10.1115/1.2818129.

    Article  CAS  Google Scholar 

  25. LeCong T, Dagaut P. Experimental and detailed modeling study of the effect of water vapor on the kinetics of combustion of hydrogen and natural gas, impact on NOx. Energy Fuels. 2009;23:725–34.

    Article  CAS  Google Scholar 

  26. Kayadelen HK, Ust Y. Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles. Int J Energy Res. 2018;42(12):3780–802.

    Article  Google Scholar 

  27. Singh OK. Combustion simulation and emission control in natural gas fuelled combustor of gas turbine. J Therm Anal Calorim [Internet]. 2016;125(2):949–57. https://doi.org/10.1007/s10973-016-5472-0.

    Article  CAS  Google Scholar 

  28. Kurz R, Meher-homji C, Brun K, Moore J, Gonzalez F. Gas turbine performance and maintenance. Proc Forty-Second Turbomach Symp. 2013;(October):1–32.

  29. Breidenich C, Magraw D, Rowley A, Rubin JW. The kyoto protocol to the united nations framework convention on climate change. Am Soc Int Law. 1998;92(2):315–31.

    Article  Google Scholar 

  30. UNFCCC. Adoption of the paris agreement. FCCC/CP/2015/L9/Rev1 [Internet]. 2015; Available from: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

  31. Bonzani F, Piana C, Zito D. GT2010-22254. Proc ASME Turbo Expo 2007 Power L Sea Air, ASME Pap GT2010–22254. 2010.

  32. Göke S, Furi M, Bourque G, Bobusch B, Gockeler K, Kruger O, et al. Influence of steam dilution on NOx formation in premixed natural gas and hydrogen flames. In: 50th AIAA Aerosp Sci Meet. 2012;1–15.

  33. Andrews GE. 16—Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems [Internet]. Modern gas turbine systems: high efficiency, low emission, fuel flexible power generation. Cambridge: Woodhead Publishing Limited; 2013. p. 715–90. https://doi.org/10.1533/9780857096067.3.715.

    Book  Google Scholar 

  34. Rad EA, Kazemiani-Najafabadi P. Thermo-environmental and economic analyses of an integrated heat recovery steam-injected gas turbine. Energy [Internet]. 2017;141:1940–54. https://doi.org/10.1016/j.energy.2017.11.044.

    Article  Google Scholar 

  35. Farzaneh-Gord M, Deymi-Dashtebayaz M. Effect of various inlet air cooling methods on gas turbine performance. Energy [Internet]. 2011;36(2):1196–205. https://doi.org/10.1016/j.energy.2010.11.027.

    Article  Google Scholar 

  36. Rad EA, Kazemiani-Najafabadi P. Introducing a novel optimized dual fuel gas turbine (DFGT) based on a 4E objective function. J Clean Prod [Internet]. 2018;206:944–54. https://doi.org/10.1016/j.jclepro.2018.09.129.

    Article  Google Scholar 

  37. Wang FJ, Chiou JS. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Convers Manag. 2004;45(1):15–26.

    Article  CAS  Google Scholar 

  38. Dincer I, Rosen MA. Energy, environment and sustainable development. Amsterdam: Elsevier; 2007. p. 472.

    Google Scholar 

  39. Amar P, Staudt J, Ulbrich I, Fadely K. Status report on NOx controls for gas turbines, cement kilns, industrial boilers, internal combustion engines technologies & cost effectiveness. In: Northeast states for coordinated air use management (NESCAUM). 2000.

  40. Rizk NK, Mongia HC. Semianalytical correlations for NOx, CO, and UHC emissions. J Eng Gas Turbines Power-Trans ASME [Internet]. 1993;115(3):612–9.

    Article  CAS  Google Scholar 

  41. Lazzaretto A, Toffolo A. Prediction of performance and emissions of a two-shaft gas turbine from experimental data. Appl Therm Eng. 2008;28:2405–15.

    Article  CAS  Google Scholar 

  42. Barzegar-Avval H, Ahmadi P, Ghaffarizade A, Saidi M. Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm. Int J Energy Res. 2011;35:389–403.

    Article  Google Scholar 

  43. Deymi-dashtebayaz M, Kazemiani-Najafabadi P. Energy, exergy, economic, and environmental analysis for various inlet air cooling methods on Shahid Hashemi- Nezhad gas turbines refinery. Energy Environ. 2018;30(3):1–18

    Google Scholar 

  44. Valero A, Lozano MA, Serra L. CGAM problem: definition and conventional solution. Energy. 1994;19(3):279–86.

    Article  Google Scholar 

  45. Horngren CT, Datar SM, Rajan MV. Cost accounting: a managerial emphasis, vol. 25. Florida: Issues in Accounting Education; 2015. p. 1–959.

    Google Scholar 

  46. Ehyaei MA, Mozafari A, Alibiglou MH. Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant. Energy [Internet]. 2011;36(12):6851–61. https://doi.org/10.1016/j.energy.2011.10.011.

    Article  Google Scholar 

  47. Mozafari A, Ahmadi A, Ehyaei MA. Optimisation of micro gas turbine by exergy, economic and environmental (3E) analysis. Int J Exergy [Internet]. 2010;7(1):1–19.

    Article  Google Scholar 

  48. Liu Z, Karimi IA. New operating strategy for a combined cycle gas turbine power plant. Energy Convers Manag [Internet]. 2018;171:1675–84. https://doi.org/10.1016/j.enconman.2018.06.110.

    Article  Google Scholar 

  49. Saghafifar M, Gadalla M. Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy. 2015;87:663–77.

    Article  Google Scholar 

  50. El-shazly AA, Elhelw M, Sorour MM, El-maghlany WM. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques. Alex Eng J [Internet]. 2016;55(3):1903–14. https://doi.org/10.1016/j.aej.2016.07.036.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Kazemiani-Najafabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemiani-Najafabadi, P., Amiri Rad, E. Introducing an optimum gas turbine inlet temperature (TIT) based on a 4E analysis: a case study of northeastern Iran. J Therm Anal Calorim 146, 403–413 (2021). https://doi.org/10.1007/s10973-020-09955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09955-7

Keywords

Navigation