Skip to main content
Log in

Isoniazid thermal runaway simulation based on ARC data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The law of fire occurring in the reaction of self-reactive substances is unique, when heated, comparing with common solid combustibles. In this paper, the possible thermal runaway reaction of Isoniazid storage was studied. Combined with the analysis of Isoniazid thermal stability characteristics, Fire Dynamics Simulator (FDS) was used to simulate the Isoniazid storage fire. The temperature distribution of Isoniazid storage was obtained. According to the simulation results, the temperature field of Isoniazid storage was analyzed by regression. The law of temperature distribution with height, time and distance from the center of ceiling was obtained. It was found that the ceiling temperature was highest at different heights. On the ceiling, the temperature was highest in the center. From the center to the sides, the temperature tended to drop. Therefore, when setting up the self-spraying fire extinguishing system, the sprinkler head protection roof needs to be set up, and for the stack center position, the sprinkler head should be protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({\dot{Q}}_\mathrm{in}\) :

The heat input

\({\dot{Q}}_\mathrm{out}\) :

The heat output

\({\dot{Q}}_\mathrm{r}\) :

The heat generated by itself

\(\frac{\Delta Q}{\Delta t}\) :

Temperature rise

U :

Total heat conductivity

A :

The area of contact between sample and package

\(T_\mathrm{c}\) :

The temperature of small-size sample

\(T_\mathrm{s}\) :

The surface temperature of large-size stack

\(M_\mathrm{s}\) :

Mass of large-size stack

\(M_\mathrm{c}\) :

Mass of small sample

\({\Delta H_\mathrm{c}}\) :

Reaction heat

\(C_\mathrm{p,s}\) :

Specific heat capacity of large-size stack

\(C_\mathrm{p,c}\) :

Specific heat capacity of small sample

\(\alpha\) :

Reaction extent

\(E_\alpha\) :

Activation energy

\(A_\propto\) :

Preexponential factor

R :

Gas constant

\(f(\alpha )\) :

Reflecting the mechanism of the process

References

  1. Frank-Kamenetskii DA, Diffusion and Heat Transfer in Chemical Kinetics. 2nd Ed. Translated from Russian by J. P. Appleton, Plenum Press, New York, p 375 (1969).

  2. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Strey R, Anderson HL, Kemmler A, Kueleers R, Janssens J, Dessseyn HO, Li C-R, TangTong B, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  3. Dellavedova M, Pasturenzi C, Gigante L, Lunghi A. Kinetic evaluations for the transportation of dangerous chemical compounds. Chem Ing Trans. 2012;26:85–90.

    Google Scholar 

  4. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117(3):1017–26.

    Article  CAS  Google Scholar 

  5. Miyake A, Kimura A, Ogawa T, Satoh Y, Inano M. Thermal hazard analysis of hydrazine and nitric acid mixtures. J Therm Anal Calorim. 2005;80(2):515–8.

    Article  CAS  Google Scholar 

  6. Porob Reema A, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4. J Therm Anal Calorim. 2006;86(3):605–8.

    Article  CAS  Google Scholar 

  7. Wedlich RC, Davis DD. Non-isothermal kinetics of hydrazine decomposition. Thermochimica Acta. 1990;171(1):1–13.

    Article  CAS  Google Scholar 

  8. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. Ictac kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  9. Guo S, Wan W, Chen C, Chen WH. Thermal decomposition kinetic evaluation and its thermal hazards prediction of AIBN[J]. J Therm Anal Calorim. 2013. https://doi.org/10.1007/s10973-013-2993-7.

    Article  Google Scholar 

  10. Liu Y, Yang Q, Chen LP, He ZQ, Lu Y, Chen WH. Thermal sensitivity of energetic materials characterized by accelerating rate calorimeter (ARC). Chin J Energy Mater. 2011;19:656–60.

    Google Scholar 

  11. Zhang GY, Jin SH, Li LJ, Li YK, Wang DQ, Li W, Zhang T, Shu QH. Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX) with accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126:467–71.

    Article  CAS  Google Scholar 

  12. Linteris G, Katta V, Takahashi F. Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames. Combust Flame. 2004;138(1):78–96.

    Article  CAS  Google Scholar 

  13. Xu Q, Griffin G, Jiang Y, Preston C, Bicknell A, Bradbury G, et al. Study of burning behavior of small scale wood crib with cone calorimeter. J Therm Anal Calorim. 2008;91(3):787–90.

    Article  CAS  Google Scholar 

  14. Ferng Y-M, Liu C-H. Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code. Nucl Eng Des. 2011;241(8):3142–8.

    Article  CAS  Google Scholar 

  15. Chi J-H. Using thermal analysis experiment and fire dynamics simulator (FDS) to reconstruct an arson fire scene. J Therm Anal Calorim. 2013;113(2):641–8.

    Article  CAS  Google Scholar 

  16. Zhang S, Ni X, Zhao M, et al. Numerical simulation of wood crib fire behavior in a confined space using cone calorimeter data. J Therm Anal Calorim. 2015;119(3):2291–303.

    Article  CAS  Google Scholar 

  17. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Thermal decomposition of AIBN, Part B: Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach. Thermochimica Acta. 2015;621:6–24.

    Article  CAS  Google Scholar 

  18. Dragoe N, Segal E. Pseudo-inverse matrix method—a direct method for non-isothermal kinetic analysis. J Therm Anal Calorim. 1998;54(3):931–5.

    Article  CAS  Google Scholar 

  19. Zhang CY, Jin SH, Chen SS, Li LJ, Zhou C, Zhan Y, Shu QH. Thermal behavior and thermo-kinetic studies of 5,5′-bistetrazole-1,1′-diolate (1,1-BTO). J Therm Anal Calorim. 2017;129:1265–70.

    Article  CAS  Google Scholar 

  20. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on dsc and hfc signals. J Therm Anal Calorim. 2008;93(1):143–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Hl., Zhang, Sh. Isoniazid thermal runaway simulation based on ARC data. J Therm Anal Calorim 145, 3133–3140 (2021). https://doi.org/10.1007/s10973-020-09939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09939-7

Keywords

Navigation