Skip to main content

Boron nitride/epoxy resin nanocomposites: development, characterization and functionality

Abstract

Polymer matrix composites with embedded ceramic nanoparticles receive not only enhanced scientific but also technological interest, due to their improved thermo-mechanical, electrical, magnetic and other properties. This materials’ category is undoubtedly a promising new class of engineering materials suitable for applications such as stationary power systems, cellular phones, wireless personal digital assistants and hybrid electric vehicles. Ceramic/polymer nanocomposites exhibit multifunctional performance since they are able to combine structural integrity and appropriate thermal response with tunable dielectric behaviour. In this study, boron nitride/epoxy resin nanocomposites were synthesized and their dielectric and mechanical properties were studied via broadband dielectric spectroscopy and dynamic mechanical analysis, respectively. The increase in dielectric permittivity is caused by the augmentation of the macromolecular mobility at low filler content, the higher permittivity values of boron nitride relative to epoxy resin and by the induced electrical heterogeneity in nanocomposites. Storage modulus appears to be filler dependent and decreases with reducing the filler content. The morphological and structural characterization of the nanocomposites was conducted via scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy, in order to ensure the successful development of the specimens and the fine dispersion of the nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Toner V, Polizos G, Manias E, Randall CA. Epoxy-based nanocomposites for electrical energy storage. I: effects of montmorillonite and barium titanate nanofillers. J Appl Phys. 2010;108:074116.

    Article  Google Scholar 

  2. 2.

    Ramajo L, Reboredo MM, Castro MS. BaTiO3–epoxy composites for electronic applications. Int J Appl Ceram Technol. 2010;7:444–51.

    CAS  Google Scholar 

  3. 3.

    Patsidis AC, Kalaitzidou K, Psarras GC. Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behaviour. J Therm Anal Calorim. 2014;116:41–9.

    CAS  Article  Google Scholar 

  4. 4.

    Thomas P, Ashokbabu A, Vaish R. Structural, thermal and dielectric properties and thermal degradation kinetics of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09105-8.

    Article  Google Scholar 

  5. 5.

    Psarras GC. “Energy materials” the role of polymers. Express Polym Lett. 2016;10:721.

    Article  Google Scholar 

  6. 6.

    Sanida A, Stavropoulos SG, Speliotis Th, Psarras GC. Development, characterization, energy storage and interface dielectric properties in SrFe12O19/epoxy nanocomposites. Polymer. 2017;120:73–81.

    CAS  Article  Google Scholar 

  7. 7.

    Tsonos C, Zois H, Kanapitsas A, Soin N, Siores E, Peppas GD, Pyrgioti EC, Sanida A, Stavropoulos SG, Psarras GC. Polyvinylidene fluoride/magnetite nanocomposites: dielectric and thermal response. J Phys Chem Solids. 2019;129:376–8.

    Article  Google Scholar 

  8. 8.

    Mochane MJ, Mokhena TC, Motaung TE, Linganiso LZ. Shape-stabilized phase change materials of polyolein/wax blends and their composites. J Therm Anal Calorim. 2020;139:2951–63.

    CAS  Article  Google Scholar 

  9. 9.

    Raj CR, Suresh S, Bhavsar RR, Singh VK. Recent developments in thermo-physical property enhancement and applications of solid–solid phase change materials. J Therm Anal Calorim. 2020;139:3023–49.

    CAS  Article  Google Scholar 

  10. 10.

    Kök M, Al-Jaf AOA, Cirak ZD, Qader IN, Özen E. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J Therm Anal Calorim. 2020;139:3405–13.

    Article  Google Scholar 

  11. 11.

    Krawczak P. Polymer composites: evolve towards multifunctionality or perish. Express Polym Lett. 2019;13:771.

    Article  Google Scholar 

  12. 12.

    Tomara GN, Kerasidou AP, Patsidis AC, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA. Dielectric response and energy storage efficiency of low content TiO2–polymer matrix nanocomposites. Compos Part Appl Sci Manuf. 2015;71:204–11.

    CAS  Article  Google Scholar 

  13. 13.

    Zhaohe D, Luqi L, Zhong Z. Strain engineering of 2D materials: issues and opportunities at the interface. Adv Mater. 2019;31:1805417.

    Article  Google Scholar 

  14. 14.

    Jain A, Bharadwaj P, Heeg S, Parzefall M, Taniguchi T, Watanabe K, Novotny L. Minimizing residues in transfer of 2D materials from PDMS. Nanotechnology. 2018;29:265203.

    Article  Google Scholar 

  15. 15.

    Kakarla RR, Kwang-Pill L, Youngil L, Anantha IG. Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett. 2008;62:1815–8.

    Article  Google Scholar 

  16. 16.

    Kakarla RR, Byung CS, Kwang SR, Jin-Chun K, Hoeil C, Youngil L. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met. 2009;159:595–603.

    Article  Google Scholar 

  17. 17.

    Su JH, Hyung-Il L, Han MJ, Byung KK, Anjanapura VR, Kakarla RR. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci B. 2014;53:1193–204.

    Article  Google Scholar 

  18. 18.

    Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115:4744–822.

    CAS  Article  Google Scholar 

  19. 19.

    Najafi M, Ansari R, Darvizeh A. Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites. Polym Compos. 2019;40:2523–33.

    CAS  Article  Google Scholar 

  20. 20.

    Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B. 2007;76:73103.

    Article  Google Scholar 

  21. 21.

    Song Q, Zhu W, Deng Y, Hai F, Wang Y, Guo Z. Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material. Compos A Appl Sci. 2019;127:105654.

    CAS  Article  Google Scholar 

  22. 22.

    Chen Y, Gao X, Wang J, He W, Silberschmidt VV, Wang S, Tao Z, Xue H. Properties and application of polyimide-based composites by blending surface functionalized boron nitride nanoplates. Appl Polym Sci. 2015;132:41889.

    Google Scholar 

  23. 23.

    Han S, Meng Q, Qiu Z, Osman A, Cai R, Yu Y, Liu T, Araby S. Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer. 2019;184:121884.

    CAS  Article  Google Scholar 

  24. 24.

    Lin Meiyan, Li Yinghui, Ke Xu, Yanghao Ou, Lingfeng Su, Feng Xiao, Li Jun, Qi Haisong, Liu Detao. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets. Compos Sci Technol. 2019;175:85–91.

    CAS  Article  Google Scholar 

  25. 25.

    Ahmed F, Heo S, Yang Z, Ali F, Ra CH, Lee HI, Taniguchi T, Hone J, Lee BH, Yoo WJ. Dielectric dispersion and high field response of multilayer hexagonal boron nitride. Adv Funct Mater. 2018;28:1804235.

    Article  Google Scholar 

  26. 26.

    Mathioudakis GN, Patsidis AC, Psarras GC. Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim. 2014;116:27–33.

    CAS  Article  Google Scholar 

  27. 27.

    Psarras GC. Hopping conductivity in polymer matrix–metal particles composites. Compos Part Appl Sci Manuf. 2006;37:1545–53.

    Article  Google Scholar 

  28. 28.

    Konstantinou AC, Sanida A, Patsidis AC, Psarras GC. Development characterization and functionality of epoxy resin/barium oxide composite materials. In: 18th European conference on composite materials, ECCM18, 24–28th June 2018, Athens, Greece.

  29. 29.

    Tsikriteas Z-M, Manika GC, Patsidis AC, Psarras GC. Dielectric, thermal and functional behavior of barium zirconate/epoxy resin nanocomposite system. In: 18th European conference on composite materials, ECCM18, 24–28th June 2018, Athens, Greece.

  30. 30.

    Jonscher AK. Dielectric relaxation in solids. J Phys Appl Phys. 1999;32:R57–70.

    CAS  Article  Google Scholar 

  31. 31.

    Pontikopoulos PL, Psarras GC. Dynamic percolation and dielectric response in multiwall carbon nanotubes/poly(ethylene oxide) composites. Sci Adv Mater. 2013;5:14–20.

    CAS  Article  Google Scholar 

  32. 32.

    Psarras GC. Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai Y-W, editors. Physical properties and applications of polymer nanocomposites. Cambridge: Woodhead Publishing; 2010. p. 31–69.

    Chapter  Google Scholar 

  33. 33.

    Ioannou G, Patsidis AC, Psarras GC. Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos Part Appl Sci Manuf. 2011;42:104–10.

    Article  Google Scholar 

  34. 34.

    Manika GC, Psarras GC. Barium titanate/epoxy resin composite nanodielectrics as compact capacitive energy storing systems. Express Polym Lett. 2019;13:749–58.

    CAS  Article  Google Scholar 

  35. 35.

    Psarras GC. Nanodielectrics: an emerging sector of polymer nanocomposites. Express Polym Lett. 2008;2:460.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. C. Psarras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konstantinou, A.C., Patsidis, A.C. & Psarras, G.C. Boron nitride/epoxy resin nanocomposites: development, characterization and functionality. J Therm Anal Calorim 145, 2925–2933 (2021). https://doi.org/10.1007/s10973-020-09933-z

Download citation

Keywords

  • Dielectric relaxation
  • Thermo-mechanical response
  • Energy storage
  • Multifunctionality