Long-chain branched polypropylene: crystallization under high pressure and polymorphic composition

Abstract

High-pressure crystallization and resulting polymorphic composition of long-chain branched polypropylene (LCB-PP) were studied and compared with common linear isotactic polypropylene (PP). Commercially available LCB-PP and PP with similar melt flow indexes were crystallized under several high pressures (20, 40, 80, 120 and 160 MPa) at constant cooling rate 5 °C min−1. Structure of crystallized samples was evaluated via wide-angle X-ray scattering, differential scanning calorimetry and scanning electron microscopy. It was shown that under low pressure LCB-PP crystallizes at higher crystallization temperature than PP due to its higher nucleating density. The opposite situation is observed at high pressures (120 and 160 MPa): crystallization temperature of PP exceeds that of LCB-PP as a negative effect of branching is pronounced. Polymorphic analysis proved that LCB-PP tends to crystallize into orthorhombic γ-form. This crystalline form becomes to be dominant at 40 MPa, and LCB-PP samples crystallized at 120 and 160 MPa contain solely γ-form. On the other hand, no pure γ-form sample was prepared from PP in this study, although positive effect of pressure on its formation is observed. Thermodynamic stability of LCB-PP crystalline structure is systematically lower compared to PP. With pronounced crystallization pressure, the melting peak broadens and finally splits, indicating the presence of dominant amount of γ-form in LCB-PP. In comparison with PP, crystallites in LCB-PP structure are considerably smaller due to lower crystal growth rate and higher nucleating density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Tian J, Yu W, Zhou CHJ. Crystallization behaviors of linear and long chain branched polypropylene. J Appl Polym Sci. 2007;104:3592–600.

    CAS  Article  Google Scholar 

  2. 2.

    Su Z, Wang H, Dong J, Zhang X, Dong X, Zhao Y, Yu J, Han ChC, Xu D, Wang D. Conformation transition and crystalline phase variation of long chain branched isotactic polypropylenes (LCB-iPP). Polymer. 2007;48:870–6.

    CAS  Article  Google Scholar 

  3. 3.

    Rätzsch M. Reaction mechanism to long-chain branched PP. J Macromol Sci A. 1999;36:1759–69.

    Article  Google Scholar 

  4. 4.

    Krause B, Stephan M, Volkland S, Voigt D, Haussler L, Dorschner H. Long-chain branching of polypropylene by electron-beam irradiation in the molten state. J Appl Polzm Sci. 2006;99:260–5.

    CAS  Article  Google Scholar 

  5. 5.

    Tian J, Yu W, Zhou Ch. The preparation and rheology characterization of long chain branching polypropylene. Polymer. 2006;47:7962–9.

    CAS  Article  Google Scholar 

  6. 6.

    Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD. Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer. 2001;42:10035–43.

    CAS  Article  Google Scholar 

  7. 7.

    Langston JA, Colby RH, Chung TCM, Shimizu F, Suzuki T, Aoki M. Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules. 2007;40:2712–20.

    CAS  Article  Google Scholar 

  8. 8.

    Diop MF, Torkelson JM. Novel synthesis of branched polypropylene via solid-state shear pulverization. Polymer. 2015;60:77–87.

    CAS  Article  Google Scholar 

  9. 9.

    Guapacha J, Failla MD, Valles EM, Quinzani LM. Molecular, rheological, and thermal study of long-chain branched polypropylene obtained by esterification of anhydride grafted polypropylene. J Appl Polym Sci. 2014;131:12.

    Article  Google Scholar 

  10. 10.

    Borsig E, Duin M, Gotsis AD, Picchioni F. Long chain branching on linear polypropylene by solid state reactions. Eur Polym J. 2008;44:200–12.

    CAS  Article  Google Scholar 

  11. 11.

    He GJ, Yuan BY, Zheng TT, Zhu WL, Yin XC. In situ ozonolysis of polypropylene during extrusion to produce long-chain branches with the aid of TMPTA. RSC Adv. 2017;7:22531–9.

    CAS  Article  Google Scholar 

  12. 12.

    Yang L, Jiang TH, Gong W, He L, Luo Z, Zhang C. Influence of polypropylene topological structure evolution during melt branching reactive processing on its melt performances. Polym Adv Technol. 2018;29:2300–7.

    CAS  Article  Google Scholar 

  13. 13.

    Chikhalikar K, Banik S, Azad LB, Jadhav K, Mahajan S, Ahmad Z, Kulkarni S, Gupta S, Doshi P, Pol H, Lele A. Extrusion film casting of long chain branched polypropylene. Polym Eng Sci. 2015;55:1977–87.

    CAS  Article  Google Scholar 

  14. 14.

    Tian J, Yu W, Zhou CX. Crystallization kinetics of linear and long-chain branched polypropylene. J Macromol Sci B. 2006;45:969–85.

    CAS  Article  Google Scholar 

  15. 15.

    Karger-Kocsis J. Polypropylene: an A-Z reference. Dortrecht: Kluwer Academic Publishers; 1999.

    Google Scholar 

  16. 16.

    Zhao W, Huang Y, Liao X, Yang Q. The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties. Polymer. 2013;54:1455–62.

    CAS  Article  Google Scholar 

  17. 17.

    Ni QL, Fan JQ, Dong JY. Crystallization behavior and crystallization kinetic studies of isotactic polypropylene modified by long-chain branching polypropylene. J Appl Polym Sci. 2009;114:2180–94.

    CAS  Article  Google Scholar 

  18. 18.

    Zeng W, Wang J, Feng Z, Dong JY, Yan S. Morphologies of long chain branched isotactic polypropylene crystallized from melt. Colloid Polym Sci. 2005;284:322–6.

    CAS  Article  Google Scholar 

  19. 19.

    Maier C, Calafut T. Polypropylene—the definitive user’s guide and databook. 1st ed. Norwich: Plastics Design Library; 1998.

    Google Scholar 

  20. 20.

    Alamo RG, Kim MH, Galante MJ, Isasi JR, Mandelkern L. Structural and kinetic factors governing the formation of the & #x03B3; polymorph of isotactic polypropylene. Macromolecules. 1999;32:4050–64.

    CAS  Article  Google Scholar 

  21. 21.

    Kardos JL, Christiansen AW, Baer E. Structure of pressure-crystallized polypropylene. J Polym Sci A. 1966;2(4):777–88.

    Article  Google Scholar 

  22. 22.

    Sowinski P, Piorkowska E, Boyer AES, Haudin JM. On the structure and nucleation mechanism in nucleated isotactic polypropylene crystallized under high pressure. Polymer. 2018;151:179–86.

    CAS  Article  Google Scholar 

  23. 23.

    Sowinski P, Piorkowska E, Boyer AES, Haudin JM. Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polym J. 2016;85:564–74.

    CAS  Article  Google Scholar 

  24. 24.

    Obadal M, Cermak R, Stoklasa K. Tailoring of three-phase crystalline systems in isotactic poly(propylene). Macromol Rapid Commun. 2005;26:1253–7.

    CAS  Article  Google Scholar 

  25. 25.

    Sauer JA, Pae KD. Structure and thermal behavior of pressure-crystallized polypropylene. J Appl Phys. 1968;39:4959–68.

    CAS  Article  Google Scholar 

  26. 26.

    Chvatalova L, Navratilova J, Cermak R, Raab M, Obadal M. Joint effects of molecular structure and processing history on specific nucleation of isotactic polypropylene. Macromolecules. 2009;42:7413–7.

    CAS  Article  Google Scholar 

  27. 27.

    Varga J. beta-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Phys. 2002;41:1121–71.

    Article  Google Scholar 

  28. 28.

    Ren XQ, Zhang YF. Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene. J Therm Anal Calorim. 2019;137:563–73.

    CAS  Article  Google Scholar 

  29. 29.

    Zhang YF, Lin XF, Chen S. Preparation and nucleation effect of a novel compound nucleating agent carboxylated graphene/calcium pimelate for isotactic polypropylene. J Therm Anal Calorim. 2019;136:2363–71.

    CAS  Article  Google Scholar 

  30. 30.

    Lezak E, Bartczak Z. Experimental study of the formation of β- and γ-phase isotactic polypropylene and estimation of the phase composition by wide-angle X-ray scattering. Fibres Text East Eur. 2005;13:51–6.

    CAS  Google Scholar 

  31. 31.

    Mezghani K, Philips PJ. The gamma-phase of high molecular weight isotactic polypropylene. 2. The morphology of the gamma-form crystallized at 200 MPa. Polymer. 1997;38:5725–33.

    CAS  Article  Google Scholar 

  32. 32.

    Weng W, Hu W, Dekmezian AH, Ruff ChJ. Long chain branched isotactic polypropylene. Macromolecules. 2002;35:3838–43.

    CAS  Article  Google Scholar 

  33. 33.

    Vanderhart DL, Alamo RG, Nyden MR, Kim MH, Mandelkern L. Observation-of resonances associated with stereo and regio defects in the crystalline regions of isotactic polypropylene: toward a determination of morphological partitioning. Macromolecules. 2000;33:6078–93.

    CAS  Article  Google Scholar 

  34. 34.

    Thomann R, Semke H, Maier RD, Thomann Y, Scherble J, Mulhaupt R. Influence of stereoirregularities on the formation of the gamma-phase in isotactic polypropene. Polymer. 2001;42:4597–603.

    CAS  Article  Google Scholar 

  35. 35.

    Sun H, Zhao Z, Yang Q, Yang L, Wu P. The morphological evolution and β-crystal distribution of isotactic polypropylene with the assistance of a long chain branched structure at micro-injection molding condition. J Polym Res. 2017;24:75.

    Article  Google Scholar 

  36. 36.

    Hoffman JD, Weeks JJ. Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys. 1962;37:1723–42.

    CAS  Article  Google Scholar 

  37. 37.

    Auriemma F, De Rosa C, Boscato T, Corradini P. The oriented gamma form of isotactic polypropylene. Macromolecules. 2001;34:4815–26.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jana Navratilova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navratilova, J., Gajzlerova, L., Kovar, L. et al. Long-chain branched polypropylene: crystallization under high pressure and polymorphic composition. J Therm Anal Calorim 143, 3377–3383 (2021). https://doi.org/10.1007/s10973-020-09931-1

Download citation

Keywords

  • Crystallization under high pressure
  • Long-chain branched polypropylene
  • Polymorphism
  • Thermal properties