Skip to main content
Log in

Experimental investigation of heat transfer and pressure drop in metal-foam-filled circular and flattened tubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer and pressure drop of laminar flow inside circular and flattened tubes partially and fully filled with copper metal foam were experimentally investigated. The wall heated by a constant and uniform heat flux and water was used as the working fluid with Reynolds number ranging 500–2300. Six different configurations for tubes and porous media supposed and the Nusselt number and pressure drop data are reported and compared. The experimental results revealed that the porous media and flattening the tube have a significant effect on the thermal and hydrodynamic performances of the system due to the heat spreading through the copper matrix, better mixing of the fluid and extending the heat transfer area. Performance evaluation was carried out, and fully filled tubes were reported as having the best performance. The experimental data are also compared to well-known correlations from the literature, and new correlations are proposed to predict the Nusselt number and friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

C F :

Inertia parameter

c p :

Specific heat capacity (J kg−1 K−1)

CT:

Circular tube

d p :

Particle diameter (m)

D :

Round tube diameter (m)

D h :

Hydraulic diameter (m)

EB:

Energy balance

f :

Friction factor

FT:

Flat tube

H :

Tube height (m)

H p :

Porous layer thickness (m)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability (m2)

L :

Length of tube (m)

Nu:

Nusselt number

P :

Pressure (kg m−1 s−2)

Pr:

Prandtl number

Q :

Total heat transfer rate (W m−2 K−1)

\( \dot{Q}_{{\text{e}}} \) :

Electrical heat (W m−2 K−1)

\( \dot{Q}_{{\text{w}}} \) :

Heat transfer rate to the water (W m−2 K−1)

q″:

Heat flux (W m−2)

Re:

Reynolds number

T :

Temperature (K)

t :

Pores thickness (m)

V :

Velocity (m s−1)

W :

Width of the flat tube (m)

Z :

Axial distance from the inlet (m)

\( \alpha \) :

Thermal diffusivity (=k/\( \rho \)Cp) (m2 s−1)

\( \epsilon \) :

Porosity

\( \rho \) :

Density (kg m−3)

\( \rho_{\text{r}} \) :

Relative density

\( \mu \) :

Dynamic viscosity (kg m−1 s−1)

\( \omega \) :

Pore density

0:

Round tube without porous

b:

Bulk

i:

Inlet

loc:

local

mean:

mean

p:

Porous

s:

Solid

t:

Heat enhancement mechanism

w:

Wall

x:

X direction

y:

Y direction

z:

Z direction

References

  1. Teamah MA, El-Maghlany WM, Khairat Dawood MM. Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material. Int J Therm Sci. 2011;50:1512–22.

    Article  Google Scholar 

  2. Dehghan M, Tajik Jamalabad M, Rashidi S. Analytical Nusselt number for forced convection inside a porous-filled tube with temperature-dependent thermal conductivity arising from high-temperature applications. J Therm Analys Calorim. 2020. https://doi.org/10.1007/s10973-020-09667-y.

    Article  Google Scholar 

  3. Yang C, Liu W, Nakayama A. Forced convective heat transfer enhancement in a tube with its core partially filled with a porous medium. Open Transp Phenom J. 2009;1:6.

    Article  Google Scholar 

  4. Yang C, Ando K, Nakayama A. A local thermal non-equilibrium analysis of fully developed forced convective flow in a tube filled with a porous medium. Transp Porous Med. 2011;89:237–49.

    Article  CAS  Google Scholar 

  5. Mahmoudi Y, Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int J Heat Mass Transf. 2014;68:161–73.

    Article  Google Scholar 

  6. Mahdavi M, Saffar-Avval M, Tiari S, Mansoori Z. Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int J Heat Mass Transf. 2014;79:496–506.

    Article  Google Scholar 

  7. Shokouhmand H, Jam F, Salimpour MR. The effect of porous insert position on the enhanced heat transfer in partially filled channels. Int Commun Heat Mass Transf. 2011;38:1162–7.

    Article  Google Scholar 

  8. Pavel BI, Mohamad AA. An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. Int J Heat Mass Transf. 2004;47:4939–52.

    Article  CAS  Google Scholar 

  9. Huang S, Wan Z, Wang Q, Tang Y, Yang X. Thermo-hydraulic characteristics of laminar flow in a circular tube with porous metal cylinder inserts. Appl Therm Eng. 2017;120:49–63.

    Article  Google Scholar 

  10. Tu W, Wang Y, Tang Y. Thermal characteristic of a tube fitted with porous media inserts in the single phase flow. Int J Therm Sci. 2016;110:137–45.

    Article  Google Scholar 

  11. Lu TJ, Stone HA, Ashby MF. Heat transfer in open-cell metal foams. Acta Mater. 1998;46:3619–35.

    Article  CAS  Google Scholar 

  12. Mancin S, Zilio C, Diani A, Rossetto L. Air forced convection through metal foams experimental results and modeling. Int J Heat Mass Transf. 2013;62:112–23.

    Article  CAS  Google Scholar 

  13. Bagci Ö, Dukhan N. Experimental hydrodynamics of high-porosity metal foam Effect of pore density. Int J Heat Mass Transf. 2016;103:879–85.

    Article  Google Scholar 

  14. Dukhan N, Bagci Ö, Özdemir M. Thermal development in open-cell metal foam An experiment with constant wall heat flux. Int J Heat Mass Transf. 2015;85:852–9.

    Article  CAS  Google Scholar 

  15. Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int J Heat Fluid Flow. 2010;31:613–21.

    Article  CAS  Google Scholar 

  16. Razi PM, Akhavan-Behabadi A, Saeedinia M. Pressure drop and thermal characteristics of CuO-base oil nanofluid laminar flow in flattened tubes under constant heat flux. Int Commun Heat Mass Transf. 2011;38:964–71.

    Article  CAS  Google Scholar 

  17. Safikhani H, Abbassi A. Effects of tube flattening on the fluid dynamic and heat transfer performance of nanofluid. Adv Powd Technol. 2014;25:1132–41.

    Article  CAS  Google Scholar 

  18. Safikhani H, Abbassi A, Khalkhali A, Kalteh M. Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial neural networks and genetic algorithms. Adv Powd Technol. 2014;25:1608–17.

    Article  CAS  Google Scholar 

  19. Rezaei E, Abbassi A, Safikhani H. Numerical analysis of laminar heat transfer and fluid flow in a flat tube partially filled with a porous material. J Porous Med. 2018;21:1229–51.

    Article  Google Scholar 

  20. Rezaei E, Abbassi A. (Under Publication) CFD Modeling and multi-objective optimization of flat tubes partially filled with porous layer using ANFIS, GMDH and NSGA II approaches. AUT J Mech Eng.

  21. Gibson L, Ashby MF. Cellular solids structure and properties. Cambridge: Cambridge University Press; 1997.

    Book  Google Scholar 

  22. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  23. Popiel CO, Wojtkowiak J. Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C). Heat Transf Eng. 1998;19:87–101.

    Article  CAS  Google Scholar 

  24. Shah RK, London AL. Laminar flow forced convection in ducts. New York: Academic Press; 1978.

    Google Scholar 

  25. Bear, J. Dynamics of fluids in porous media dovers. New York; 1972.

  26. Webb RL. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int J Heat Mass Transf. 1981;24:715–26.

    Article  Google Scholar 

  27. Calmidi VV, Mahajan RL. Forced convection in high porosity metal foams. J Heat Transf. 2000;122:557–65.

    Article  CAS  Google Scholar 

  28. Kim SY, Paek JW, Kang BH. Flow and Heat transfer correlations for porous fin in a plate-fin heat exchanger. Heat Transf. 2000;122:572–8.

    Article  CAS  Google Scholar 

  29. Noh JS, Lee KB, Lee CG. Pressure loss and forced convective heat transfer in an annulus filled with aluminum foam. Int Commun Heat Mass Transf. 2006;33:434–44.

    Article  Google Scholar 

  30. Yang C, Nakayama A, Liu W. Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. Int J Therm Sci. 2012;54:98–108.

    Article  Google Scholar 

  31. Wang H, Guo L. Experimental investigation on pressure drop and heat transfer in metal foam filled tubes under convective boundary condition. Chem Eng Sci. 2016;155:438–48.

    Article  CAS  Google Scholar 

  32. Vafai K, Tien CL. Boundary and inertia effects on convective mass transfer in porous media. Int J Heat Mass Transf. 1982;25:1183–90.

    Article  Google Scholar 

  33. Dietrich B. Pressure drop correlation for ceramic and metal sponges. Chem Eng Sci. 2012;74:192–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Rezaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, E., Abbassi, A. Experimental investigation of heat transfer and pressure drop in metal-foam-filled circular and flattened tubes. J Therm Anal Calorim 146, 469–482 (2021). https://doi.org/10.1007/s10973-020-09909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09909-z

Keywords

Navigation