Skip to main content
Log in

Thermal stability and kinetic degradation study for dihydroartemisinin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dihydroartemisinin (DHA), the hydrogenated derivative of the naturally originated sesquiterpene lactone artemisinin, is a well-known antimalarial agent that is currently researched because of its potential as an anticancer medication. Because DHA has been associated with a low oral bioavailability and a short half-life, new formulations meant to overcome these shortcomings are currently under development. As such, the present paper aims to present a comprehensive physico-chemical profile of DHA containing data of great importance for the preformulation stages of the drug design process. As instrumental techniques, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow) were performed, followed by a kinetic study realized using three isoconversional methods (Friedman—Fr, Flynn–Wall–Ozawa—FWO and Kissinger–Akahira–Sunose—KAS), as well as the nonparametric kinetic method (NPK). FTIR spectroscopy confirmed the identity and purity of DHA, and thermal analysis revealed a relatively low thermal stability and a multistep thermooxidation that was proved during the performed kinetic study. The latter unveiled a two-process decomposition determined by both chemical degradations and physical transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

t :

Time

T :

Temperature

α :

Conversion degree

f(α) :

The differential conversion function

R :

The universal gas constant

g(α):

The integral conversion function

β :

The heating rate

k(T):

The temperature dependence function

A :

The pre-exponential factor

E a :

The apparent activation energy given by the Arrhenius equation

References

  1. Karunajeewa HA. Artemisinins: artemisinin, dihydroartemisinin, artemether and artesunate. In: Staines HM, Krishna S, editors. Treatment and prevention of Malaria. Basel: Springer; 2012. p. 157–90.

    Google Scholar 

  2. Njuguna NM, Ongarora DSB, Chibale K. Artemisinin derivatives: a patent review (2006–present). Expert Opin Ther Pat. 2012;22(10):1179–203.

    CAS  PubMed  Google Scholar 

  3. Efferth T. Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin—from bench to bedside. Planta Med. 2007;73(4):299–309.

    CAS  PubMed  Google Scholar 

  4. Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014;142(1):126–39.

    CAS  PubMed  Google Scholar 

  5. Tang W, Eisenbrand G. Chinese drugs of plant origin. chemistry, pharmacology, and use in traditional and modem medicine. 1st ed. Berlin: Springer; 1992.

    Google Scholar 

  6. Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32(13):1655–60.

    CAS  PubMed  Google Scholar 

  7. Cabri W, D’Acquarica I, Simone P, et al. Stereolability of dihydroartemisinin, an antimalarial drug: a comprehensive kinetic investigation. Part 2. J Org Chem. 2011;76(12):4831–40.

    CAS  PubMed  Google Scholar 

  8. Haynes RK. From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem. 2006;6(5):509–37.

    CAS  PubMed  Google Scholar 

  9. Jansen FH, Soomro SA. Chemical instability determines the biological action of the artemisinins. Curr Med Chem. 2007;4(30):3243–59.

    Google Scholar 

  10. Dhooghe L, Van Miert S, Jansen H, Vlietinck A, Pieters L. A new decomposition product of dihydroartemisinin. Planta Med. 2007;73(09):10–2.

    Google Scholar 

  11. Wang D, Li H, Gu J, Guo T, Yang S, Guo Z, Zhang X, Zhu W, Zhang J. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions. J Pharm Biomed Anal. 2013;83:141–8.

    CAS  PubMed  Google Scholar 

  12. Binh TQ, Ilett KF, Batty KT, Davis TME, Hung NC, Powell SM, Thu LTA, Van Thien H, Phuöng HL, Phuong VDB. Oral bioavailability of dihydroartemisinin in Vietnamese volunteers and in patients with falciparum malaria. Br J Clin Pharmacol. 2001;51(6):541–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Batty KT, Ilett KF, Davis TME. Protein binding and α:β anomer ratio of dihydroartemisinin in vivo. Br J Clin Pharmacol. 2004;57(4):529–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Omwoyo WN, Melariri P, Gathirwa JW, Oloo F, Mahanga GM, Kalombo L, Ogutu B, Swai H. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomed Nanotechnol Biol Med. 2016;12(3):801–9.

    CAS  Google Scholar 

  15. Righeschi C, Coronnello M, Mastrantoni A, Isacchi B, Bergonzi MC, Mini E, Bilia AR. Strategy to provide a useful solution to effective delivery of dihydroartemisinin: development, characterization and in vitro studies of liposomal formulations. Colloids Surf B Biointerfaces. 2014;116:121–7.

    CAS  PubMed  Google Scholar 

  16. Li H, Li X, Shi X, Li Z, Sun Y. Effects of magnetic dihydroartemisinin nano-liposome in inhibiting the proliferation of head and neck squamous cell carcinomas. Phytomedicine. 2019;56(398):215–28.

    CAS  PubMed  Google Scholar 

  17. Wang Z, Duan X, Lv Y, Zhao Y. Low density lipoprotein receptor (LDLR)-targeted lipid nanoparticles for the delivery of sorafenib and Dihydroartemisinin in liver cancers. Life Sci. 2019;239(July):117013.

    CAS  PubMed  Google Scholar 

  18. Ansari MT, Iqbal I, Sunderland VB. Dihydroartemisinin-cyclodextrin complexation: solubility and stability. Arch Pharm Res. 2009;32(1):155–65.

    CAS  PubMed  Google Scholar 

  19. Ansari MT, Imran M, Hassan SSU, Tariq I, Murtaza G. Solubility enhancement of dihydroartemisinin using mixture of hydroxypropyl-β-cyclodextrin and PEG-6000. Lat Am J Pharm. 2014;33(3):483–91.

    CAS  Google Scholar 

  20. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Part B Polym Lett. 1969;7(1):41–6.

    CAS  Google Scholar 

  21. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  22. Ozawa T. A New Method of Analyzing Thermogravimetric Data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    CAS  Google Scholar 

  23. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    CAS  Google Scholar 

  24. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem. 1957;29(11):1702–6.

    CAS  Google Scholar 

  25. Akahira T, Sunose T. Research report, Trans joint convention of four electrical institutes. Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  26. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics model. Thermochim Acta. 1998;316(1):37–45.

    CAS  Google Scholar 

  27. Serra R, Sempere J, Nomen R. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal. 1998;52:933–43.

    CAS  Google Scholar 

  28. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56(2):843–9.

    CAS  Google Scholar 

  29. Sempere J, Nomen R, Serra R, Soravilla J. The NPK method. Thermochim Acta. 2002;388(1–2):407–14.

    CAS  Google Scholar 

  30. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data—comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80(1):59–64.

    CAS  Google Scholar 

  31. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88(3):631–5.

    CAS  Google Scholar 

  32. Xiao D, Yang B, Zhao YL, Liao XL, Yang XM, Wang F, Chen YJ, Zhou RG. Inclusion complexes of dihydroartemisinin with cyclodextrin and its derivatives: characterization, solubilization and inclusion mode. J Incl Phenom Macrocycl Chem. 2014;79(3–4):349–56.

    CAS  Google Scholar 

  33. Circioban D, Ledeti A, Vlase G, Moaca A, Ledeti I, Farcas C, Vlase T, Dehelean C. Thermal degradation, kinetic analysis and evaluation of biological activity on human melanoma for artemisinin. J Therm Anal Calorim. 2018;134(1):741–8.

    CAS  Google Scholar 

  34. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    CAS  Google Scholar 

  35. Ledeti A, Vlase G, Vlase T, Circioban D, Dehelean C, Ledeti I. Kinetic study for solid-state degradation of mental disorder therapeutic agents. J Therm Anal Calorim. 2018;131(1):155–65.

    CAS  Google Scholar 

  36. Ledeti I, Ledeti A, Vlase G, Vlase T, Matusz P, Bercean V, Suta LM, Piciu D. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations. J Pharm Biomed Anal. 2016;125:33–40.

    CAS  PubMed  Google Scholar 

  37. Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid-state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

    CAS  Google Scholar 

  38. Suta L, Vlase G, Vlase T, et al. Solid State Stability of Cholesterol. Preliminary kinetic analysis. Rev Chim. 2016;67(1):113–5.

    CAS  Google Scholar 

  39. Ledeti I, Pusztai AM, Muresan CM, et al. Study of solid-state degradation of prochlorperazine and promethazine. J Therm Anal Calorim. 2018;134(1):731–40.

    CAS  Google Scholar 

  40. Cabello CM, Lamore SD, Bair WB, Qiao S, Azimian S, Lesson JL, Wondrak GT. The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs. 2012;30(4):1289–301.

    CAS  PubMed  Google Scholar 

  41. Haynes RK, Chan HW, Lung CM, Ng AC, Wong HN, Shek LY, Williams ID, Cartwright A, Gomes MF. Artesunate and dihydroartemisinin (DHA): unusual decomposition products formed under mild conditions and comments on the fitness of DHA as An Antimalarial Drug. ChemMedChem. 2007;2(10):1448–63.

    CAS  PubMed  Google Scholar 

  42. Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, Ledeti I, Vlase T, Murariu M. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2018;131(2):1881–8.

    CAS  Google Scholar 

  43. Circioban D, Ledeţi I, Vlase G, Ledeţi A, Axente C, Vlase T, Dehelean C. Kinetics of heterogeneous-induced degradation for artesunate and artemether. J Therm Anal Calorim. 2018;134(1):749–56.

    CAS  Google Scholar 

  44. Dickinson CF, Heal GR. A review of the ICTAC kinetics project, 2000. Thermochim Acta. 2009;494(1–2):15–25.

    CAS  Google Scholar 

  45. Vyazovkin S. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355(1–2):155–63.

    CAS  Google Scholar 

  46. Brown ME, Maciejewski M, Vyazovkin S, et al. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355(1–2):125–43.

    CAS  Google Scholar 

  47. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    CAS  Google Scholar 

  48. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Ledeti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Circioban, D., Ledeti, A., Vlase, G. et al. Thermal stability and kinetic degradation study for dihydroartemisinin. J Therm Anal Calorim 142, 2131–2139 (2020). https://doi.org/10.1007/s10973-020-09902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09902-6

Keywords

Navigation