Skip to main content
Log in

Multi-group grey wolf optimizer (MG-GWO) for estimating photovoltaic solar cell model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of photovoltaic (PV) solar systems as a direct convertor of electricity is increasing on daily basis at industrial and domestic scales. Such systems are still under worldwide investigation due to their low efficiency to have better performance. In this regard, the parameters effecting the PV solar system performance should be defined and investigated using mathematical models, to determine the optimum values of these parameters that result in best possible performance. In this paper, a new and novel method based on grey wolf optimizer (GWO) algorithm is developed for the estimation of the photovoltaic solar cell model. The new proposed method is called multi-group grey wolf optimizer (MG-GWO) where several clans/packs of wolves are searching for the prey. The GWO and MG-GWO are metaheuristic techniques that mimic the leadership hierarchy and hunting behavior of clan or clans of grey wolfs. The clan consists of four levels of leadership ranked from the highest to the lowest as Alpha, Beta, Delta and Omega. On the other hand, the hunting behavior consists of three steps, searching, encircling, and attacking the prey. The algorithm mimics these levels and behavior to find the solution. In the present study, these metaheuristic techniques are used to extract the parameters of a single-diode photovoltaic (PV) solar cell model. The optimization results showed that MG-GWO is better in terms of robustness, and speed of convergence compared to conventional GWO. For more comprehensive comparison, these two methods are compared to the conventional PSO and some recent versions of PSO like time-varying accelerated coefficient PSO (PSOTAC), asymmetric time-varying acceleration coefficient PSO (PSOM), and its improved version (PSOI). The results show that MG-GWO has a superior performance compared to the other algorithms. They also show that MG reduces the values of the RMSE and MAE of GWO up to 77% depending on the number of the packs and population in each pack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Linear decreasing value from 2 to 0 by iteration

D ck :

The distance between wolf c to the wolf \(\omega\) or any other hunter, at iteration k

I ph, I d and I :

Photo-, diode, and PV cell currents \(\left( A \right)\)

n :

Diode ideality factor

N :

Number of data points

P k :

The data point of vector \(P\) with order \({\text{k}}\)

q, k :

Electron charge, and Boltzmann’s constant

rand:

A random number in [0,1]

R s, R sh :

Series and shunt resistances \(\left( {\Omega } \right)\)

T, V :

PV cell temperature (K) and voltage \(\left( V \right)\)

X k :

The candidate position at iteration \({\text{k}}\)

\(X_{{\alpha_{{\text{k}}} }} ,X_{{\beta_{{\text{k}}} }} ,X_{{\delta_{{\text{k}}} }}\) :

\(\alpha , \beta\) and \(\delta\) wolves’ positions at iteration \({\text{k}}\)

\(X_{{\text{m,k}}}\) :

The mth pack’s positions at iteration k

References

  1. Caracciolo F, Dallago E, Finarelli DG, et al. Single-variable optimization method for evaluating solar cell and solar module parameters. IEEE J Photovoltaics. 2012;2:173–80. https://doi.org/10.1109/JPHOTOV.2011.2182181.

    Article  Google Scholar 

  2. Hansen CW, Stein JS, Luketa-Hanlin A. Sensitivity of single diode models for photovoltaic modules to method used for Parameter Estimation. 28th Eur Photovolt Sol Energy Conf Exhib. 2013;3258–3264. https://doi.org/10.4229/28thEUPVSEC2013-4AV.5.27.

  3. Zhang W, Maleki A, Rosen MA. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J Clean Prod. 2019;241:117920. https://doi.org/10.1016/j.jclepro.2019.117920.

    Article  Google Scholar 

  4. Zhang G, Shi Y, Maleki A, Rosen M. Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew Energy. 2020;156:1203–14. https://doi.org/10.1016/j.renene.2020.04.010.

    Article  Google Scholar 

  5. Pillai DS, Rajasekar N. Metaheuristic algorithms for PV parameter identification: a comprehensive review with an application to threshold setting for fault detection in PV systems. Renew Sustain Energy Rev. 2018;82:3503–25. https://doi.org/10.1016/j.rser.2017.10.107.

    Article  Google Scholar 

  6. Peng W, Maleki A, Rosen MA, Azarikhah P. Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches. Desalination. 2018;442:16–311. https://doi.org/10.1016/j.desal.2018.03.021.

    Article  CAS  Google Scholar 

  7. Maleki A, Nazari MA, Pourfayaz F. Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit. Energy Rep. 2020. https://doi.org/10.1016/j.egyr.2020.03.014.

    Article  Google Scholar 

  8. Mahmoud Y, Xiao W, Zeineldin HH. A simple approach to modeling and simulation of photovoltaic modules. IEEE Trans Sustain Energy. 2012;3:185–6. https://doi.org/10.1109/TSTE.2011.2170776.

    Article  Google Scholar 

  9. Gupta S, Tiwari H, Fozdar M, Chandna V. Development of a two diode model for photovoltaic modules suitable for use in simulation studies. Asia-Pacific Power Energy Eng Conf APPEEC. 2012. https://doi.org/10.1109/APPEEC.2012.6307201.

    Article  Google Scholar 

  10. Nishioka K, Sakitani N, Uraoka Y, Fuyuki T. Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Sol Energy Mater Sol Cells. 2007;91:1222–7. https://doi.org/10.1016/j.solmat.2007.04.009.

    Article  CAS  Google Scholar 

  11. Suskis P, Galkin I. Enhanced photovoltaic panel model for MATLAB-simulink environment considering solar cell junction capacitance. IECON Proc Industrial Electron Conf. 2013. https://doi.org/10.1109/IECON.2013.6699374.

    Article  Google Scholar 

  12. Lumb MP, Bailey CG, Adams JGJ, et al. Analytical drift-diffusion modeling of GaAs solar cells incorporating a back mirror. Conf Rec IEEE Photovolt Spec Conf. 2013. https://doi.org/10.1109/PVSC.2013.6744324.

    Article  Google Scholar 

  13. Humada AM, Hojabri M, Mekhilef S, Hamada HM. Solar cell parameters extraction based on single and double-diode models: a review. Renew Sustain Energy Rev. 2016;56:494–509. https://doi.org/10.1016/j.rser.2015.11.051.

    Article  Google Scholar 

  14. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw. 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

    Article  Google Scholar 

  15. Dizqah AM, Maheri A, Busawon K. An accurate method for the PV model identification based on a genetic algorithm and the interior-point method. Renew Energy. 2014;72:212–22. https://doi.org/10.1016/j.renene.2014.07.014.

    Article  Google Scholar 

  16. Simon D, Member S. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12:702–13.

    Article  Google Scholar 

  17. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341–359. https://doi.org/10.1071/AP09004.

  18. Ríos-Fachal M, Tarrío-Saavedra J, López-Beceiro J, et al. Optimizing fitting parameters in thermogravimetry. J Therm Anal Calorim. 2014;116:1141–51. https://doi.org/10.1007/s10973-013-3623-0.

    Article  CAS  Google Scholar 

  19. Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput. 1997;1:53–66. https://doi.org/10.1109/4235.585892.

    Article  Google Scholar 

  20. Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination. 2018;435:221–34. https://doi.org/10.1016/j.desal.2017.05.034.

    Article  CAS  Google Scholar 

  21. Kang T, Yao J, Jin M, et al. A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models. Energies. 2018. https://doi.org/10.3390/en11051060.

    Article  Google Scholar 

  22. Ramezanpour M, Siavashi M. Application of SiO 2–water nanofluid to enhance oil recovery: a new hybrid optimization approach using pattern search and PSO algorithms. J Therm Anal Calorim. 2019;135:565–80. https://doi.org/10.1007/s10973-018-7156-4.

    Article  CAS  Google Scholar 

  23. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Alhuyi Nazari M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2019;137:307–16. https://doi.org/10.1007/s10973-018-7916-1.

    Article  CAS  Google Scholar 

  24. Contreras-Gallegos E, Domínguez-Pacheco FA, Hernández-Aguilar C, et al. Specific heat of vegetable oils as a function of temperature obtained by adiabatic scanning calorimetry. J Therm Anal Calorim. 2017;128:523–31. https://doi.org/10.1007/s10973-016-5864-1.

    Article  CAS  Google Scholar 

  25. Rezaee Jordehi A. Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol Energy. 2018;159:78–877. https://doi.org/10.1016/j.solener.2017.10.063.

    Article  CAS  Google Scholar 

  26. Cai W, Li X, Maleki A, et al. Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy. 2020;201:117480. https://doi.org/10.1016/j.energy.2020.117480.

    Article  Google Scholar 

  27. Alshabi M, Ghenai C, Bettayeb M. Modified asymmetric time-varying coefficient of particle swarm optimization. In: 2020 advances in science and engineering technology (ASET) international conferences. 2020. IEEE, Dubai, UAE.

  28. Alshabi M, Ghenai C, Bettayeb M. Sinusoidal asymmetric time-varying coefficient of particle swarm optimization. In: IEEE (ed) 2020 international conference on communications, signal processing, and their applications (ICCSPA). 2020. Sharjah, UAE.

  29. Alshabi M, Ghenai C, Bettayeb M. Improved asymmetric time-varying coefficient of particle swarm optimization. In: 2020 IEEE Canadian conference on electrical and computer engineering (CCECE). 2020. IEEE, Canada.

  30. Mirjalili S, Gandomi AH, Mirjalili SZ, et al. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw. 2017;114:163–91. https://doi.org/10.1016/j.advengsoft.2017.07.002.

    Article  Google Scholar 

  31. Xiong G, Zhang J, Shi D, He Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag. 2018;174:388–405. https://doi.org/10.1016/j.enconman.2018.08.053.

    Article  Google Scholar 

  32. Darmansyah, Robandi I. Photovoltaic parameter estimation using Grey Wolf Optimization. 2017 3rd Int Conf Control Autom Robot ICCAR. 2017; 593–597. https://doi.org/10.1109/ICCAR.2017.7942766

  33. Faris H, Aljarah I, Al-Betar MA, Mirjalili S. Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl. 2018;30:413–35. https://doi.org/10.1007/s00521-017-3272-5.

    Article  Google Scholar 

  34. Abbassi R, Abbassi A, Jemli M, Chebbi S. Identification of unknown parameters of solar cell models: a comprehensive overview of available approaches. Renew Sustain Energy Rev. 2018;90:453–74. https://doi.org/10.1016/j.rser.2018.03.011.

    Article  Google Scholar 

  35. Mares O, Paulescu M, Badescu V. A simple but accurate procedure for solving the five-parameter model. Energy Convers Manag. 2015;105:139–48. https://doi.org/10.1016/j.enconman.2015.07.046.

    Article  Google Scholar 

  36. Chin VJ, Salam Z, Ishaque K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl Energy. 2015;154:500–19. https://doi.org/10.1016/j.apenergy.2015.05.035.

    Article  Google Scholar 

  37. Ishaque K, Salam Z, Taheri H. Simple, fast and accurate two-diode model for photovoltaic modules. Sol Energy Mater Sol Cells. 2011;95:586–94. https://doi.org/10.1016/j.solmat.2010.09.023.

    Article  CAS  Google Scholar 

  38. Khanna V, Das BK, Bisht D, et al. A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew Energy. 2015;78:105–13. https://doi.org/10.1016/j.renene.2014.12.072.

    Article  Google Scholar 

  39. Ma J, Bi Z, Ting TO, et al. Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms. Sol Energy. 2016;132:606–16. https://doi.org/10.1016/j.solener.2016.03.033.

    Article  Google Scholar 

  40. Pindado S, Cubas J. Simple mathematical approach to solar cell/panel behavior based on datasheet information. Renew Energy. 2017;103:729–38. https://doi.org/10.1016/j.renene.2016.11.007.

    Article  Google Scholar 

  41. Jordehi AR. Parameter estimation of solar photovoltaic (PV) cells: a review. Renew Sustain Energy Rev. 2016;61:354–71. https://doi.org/10.1016/j.rser.2016.03.049.

    Article  Google Scholar 

  42. Gottschalg R, Rommel M, Infield DG, Kearney MJ. The influence of the measurement environment on the accuracy of the extraction of the physical parameters of solar cells. Meas Sci Technol. 1999;10:796–804. https://doi.org/10.1088/0957-0233/10/9/306.

    Article  CAS  Google Scholar 

  43. Ma J. Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems. Dissertation - University of Liverpool, UK. 2014; 26–61.

  44. AlRashidi MR, AlHajri MF, El-Naggar KM, Al-Othman AK. A new estimation approach for determining the I–V characteristics of solar cells. Sol Energy. 2011;85:1543–50. https://doi.org/10.1016/j.solener.2011.04.013.

    Article  Google Scholar 

  45. Raj S, Kumar Sinha A, Panchal AK. Solar cell parameters estimation from illuminated I–V characteristic using linear slope equations and Newton–Raphson technique. J Renew Sustain Energy. 2013. https://doi.org/10.1063/1.4803748.

    Article  Google Scholar 

  46. Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Sol Energy. 1986;4:1–12. https://doi.org/10.1080/01425918608909835.

    Article  CAS  Google Scholar 

  47. Jordehi AR. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers Manag. 2016;129:262–74. https://doi.org/10.1016/j.enconman.2016.09.085.

    Article  Google Scholar 

  48. Tang Z, Zhang D. A modified particle swarm optimization with an adaptive acceleration coefficients. Proc 2009 Asia-Pacific Conf Inf Process APCIP. 2009; 2:330–332. https://doi.org/10.1109/APCIP.2009.217

  49. Bao GQ, Mao KF. Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. 2009 IEEE Int Conf Robot Biomimetics, ROBIO. 2009; 2134–2139. https://doi.org/10.1109/ROBIO.2009.5420504

  50. https://animalcorner.co.uk/animals/grey-wolf/

  51. Yang B, Zhong L, Zhang X, et al. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod. 2019;215:1203–22. https://doi.org/10.1016/j.jclepro.2019.01.150.

    Article  Google Scholar 

  52. Mirjalili S, Lewis A, Sadiq AS. Autonomous particles groups for particle swarm optimization. Arab J Sci Eng. 2014;39:4683–97. https://doi.org/10.1007/s13369-014-1156-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh El Haj Assad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlShabi, M., Ghenai, C., Bettayeb, M. et al. Multi-group grey wolf optimizer (MG-GWO) for estimating photovoltaic solar cell model. J Therm Anal Calorim 144, 1655–1670 (2021). https://doi.org/10.1007/s10973-020-09895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09895-2

Keywords

Navigation