Skip to main content

Experimental performance analysis of two different passive cooling techniques for solar photovoltaic installations

Abstract

At higher ambient temperatures during summer months, the cell temperature of a photovoltaic (PV) module increases to 50–60 °C and sometimes could go as high as 80 °C due to which the PV module heats up and fails to deliver its optimum output. Active cooling techniques, such as water cooling and fan cooling for controlling and maintaining cell temperature, use energy and therefore do not add value to the efficiency of the modules. This research aims to experimentally evaluate the performance of the locally developed passive cooling technique in two different configurations, i.e. rectangular fins and circular fins applied to the rear surface of similar-sized mono-crystalline PV modules. Thermal and electrical performances of PV modules with and without fins structures have been investigated experimentally for a period of 4 months at the roof of the Department of Mechanical Engineering of Mirpur University of Science and Technology, Pakistan. Collected data were critically analyzed, and the effectiveness of each heat exchanging technique is discussed in detail. PV module with rectangular fins having larger cross-sectional and surface area dissipated 155% more heat and generated 10.8% and 4% more power than the reference module and the circular fins-based module, respectively, and resulted in a 10.6% decrement in module temperature and an increase in module efficiency by 14.5%. The circular fins-based module dissipated only 27% more heat than the reference module. Therefore, the PV module with rectangular fins is recommended for the enhanced performance of PV installations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Availability of data and material

All original measured data.

Notes

  1. Qcircular_normalized is the amount of heat dissipated from PV module having circular fins with similar surface area as of rectangular fins.

Abbreviations

\(A_{\text{a }}\) :

Actual area of PV module (m2)

\(A_{\text{c}}\) :

Cross-sectional area of fins (m2)

\(A_{\text{f}}\) :

Fin’s surface area (m2)

\(g\) :

Gravitational force (N)

\(G_{\text{r}}\) :

Grashof number

\(h\) :

Coefficient of convection heat transfer (W m² K−1)

\(I_{\text{m}}\) :

Maximum current (A)

I t :

Solar radiations (W m²)

\(L_{\text{ch}}\) :

Characteristics length (m)

\(L_{\text{c}}\) :

Corrected length (m)

M :

Constant

Nu:

Nusselt number

\(P\) :

Perimeter (m)

\(P_{\text{m}}\) :

Maximum power of PV module (W)

Pr:

Prandtl number

\(Q\) :

Heat transfer rate (W)

S :

Fin spacing (m)

\(Q_{\text{unfinned}}\) :

Heat transfer rate of the surface having no fins (W)

\(Q_{\text{finned}}\) :

Heat transfer rate from fins (W)

Ra:

Rayleigh number

T b :

PV module surface temperature (K)

\(T_{\infty }\) :

Ambient temperature (K)

\(V_{\text{m}}\) :

Maximum voltage (V)

t :

Thickness of fin (m)

W :

Width of fin (m)

\(N_{\text{f}}\) :

Number of fins

\(Q_{{{\text{no }}\,{\text{fins}}}}\) :

Heat transfer rate without fins (W)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Thermal expansion coefficient (K−1)

\(k_{\text{a}}\) :

Thermal conductivity of air (W m−1 K−1)

\(\eta_{\text{m}}\) :

Module efficiency (%)

\(v\) :

Kinematic viscosity (m2 s−1)

\(\acute{\eta}_{\text{f}}\) :

Fin efficiency (%)

\(\in_{\text{fin}}\) :

Effectiveness of fin

\(k_{\text{m}}\) :

Thermal conductivity of material (W m−1 K−1)

References

  1. Liu F, Duncan BN, Krotkov NA, Lamsal LN, Beirle S, Griffin D, et al. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmos Chem Phys. 2020;20(1):99–116.

    Article  CAS  Google Scholar 

  2. Amber KP, Hussain I, Kousar A, Bashir MA, Aslam MW, Akbar B. A self-cleaning device for pole mounted solar photovoltaic installations. Therm Sci. 2019;23(2):739–49.

    Google Scholar 

  3. Ghafoor A, Rehman T, Munir A, Ahmad M, Iqbal M. Current status and overview of renewable energy potential in Pakistan for continuous energy sustainability. Renew Sust Energ Rev. 2016;60:1332–42.

    Article  Google Scholar 

  4. Alaa AF, Husaina AAF, Hasan WZW, Shafie S, Hamidon MN, Pandey SS. A review of transparent solar photovoltaic technologies. Renew Sust Energ Rev. 2018;94:779–91.

    Article  Google Scholar 

  5. Al-Musawi AIA, Taheri A, Farzanehnia A, et al. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2019;137:623–36.

    Article  CAS  Google Scholar 

  6. Senthilkumar M, Balasubramanian KR, Kottala RK, Sivapirakasam SP, Maheswari L. Characterization of form-stable phase-change material for solar photovoltaic cooling. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09521-1.

    Article  Google Scholar 

  7. Sopian K, Alwaeli AHA, Al-Shamani AN, Elbreki AM. Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems. J Therm Anal Calorim. 2019;136:147–57.

    Article  CAS  Google Scholar 

  8. Khan TMY, Soudagar MEM, Kanchan M, Afzal A, Banapurmath NR, Akram N, et al. Optimum location and influence of tilt angle on performance of solar PV panels. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09089-5.

    Article  Google Scholar 

  9. Popovici CG, Hudisteanu SV, Mateescu TD, Chereches N. Efficiency improvement of photovoltaic modules by using air cooled heat sinks. Energy Proc. 2016;85:425–32.

    Article  Google Scholar 

  10. Dash PK, Gupta NC. Effect of temperature on power output from different commercially available photovoltaic modules. Int J Eng Res Appl. 2015;5(1):5 pages.

  11. El-Shaer A, Tadros MTY, Khalifa MA. Effect of light intensity and temperature on crystalline silicon solar modules parameters. Int J Emerg Technol Adv Eng. 2014;4(8):311–8.

    Google Scholar 

  12. Mazón-Hernández R, García-Cascales JR, Vera-García F, Káiser AS, Zamora B. Improving the electrical parameters of a photovoltaic module by means of an induced or forced air stream. Int J Photoenergy. 2013. https://doi.org/10.1155/2013/830968.

    Article  Google Scholar 

  13. Sato D, Yamada N. Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renew Sust Energ Rev. 2019;104:151–66.

    Article  Google Scholar 

  14. Egab K, Okab A, Dywan HS, Oudah SK. Enhancing a solar module cooling system using an air heat sink with different fin configurations. IOP Conf Ser Mat Sci. 2020;671:012133.

    Article  Google Scholar 

  15. Zhu J, Sun L. Modelling and numerical simulations of heat distribution for LED heat sink. Discrete Dyn Nat Soc. 2016. https://doi.org/10.1155/2016/3468246.

    Article  Google Scholar 

  16. Luo Q, Li P, Cai L, Chen X, Yan H, Zhu H, et al. Experimental investigation on the heat dissipation performance of flared-fin heat sinks for concentration photovoltaic modules. Appl Therm Eng. 2019;157:113666.

    Article  Google Scholar 

  17. Gotmare JA, Borkar DS, Hatwar PR. Experimental investigation of PV module with fin cooling under natural convection. Int J Adv Technol Eng Sci. 2015;3(3):447–54.

    Google Scholar 

  18. Chen H, Chen X, Li S, Ding H. Comparative study on the performance improvement of photovoltaic module with passive cooling under natural ventilation. Int J Smart Grid Clean Energy. 2014;3:374–9.

    Article  Google Scholar 

  19. Micheli L, Reddy KS, Mallick TK. Plate micro-fins in natural convection: an opportunity for passive concentrating photovoltaic cooling. Energy Proc. 2015;82:301–8.

    Article  Google Scholar 

  20. Arifin Z, Tjahjana DDDP, Hadi S, Rachmanto RA, Setyohandoko G, Sutanto B. Numerical and experimental investigation of air cooling for photovoltaic modules using aluminum heat sinks. Int J Photoenergy. 2020. https://doi.org/10.1155/2020/1574274.

    Article  Google Scholar 

  21. Sajjad U, Amer M, Ali HM, Dahiya A, Abbas N. Cost effective cooling of photvoltaic modules to improve efficiency. Case Stud Therm Eng. 2019;14:100420.

    Article  Google Scholar 

  22. Firoozzadeh M, Shiravi AH, Shafiee M. Thermodynamics assessment on cooling photovoltaic modules by phase change materials (PCMs) in critical operating temperature. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09565-3.

    Article  Google Scholar 

  23. Nižetić S, Marinić-Kragić I, Grubišić-Čabo F, Papadopoulos AM, Xie G. Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09410-7.

    Article  Google Scholar 

  24. Hassan A, Wahab A, Qasim MA, Janjua MM, Ali MA, Ali HM, et al. Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew Energy. 2020;145:282–93.

    Article  CAS  Google Scholar 

  25. Ali HM. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems: a comprehensive review. Sol Energy. 2020;197:163–98.

    Article  Google Scholar 

  26. Taheri A, Kazemi M, Amini M, Sardarabadi M, Kianifar A. The performance assessment of nanofluid-based PVTs with and without transparent glass cover: outdoor experimental study with thermodynamics analysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09311-9.

    Article  Google Scholar 

  27. Hasanuzzaman M, Malek ABMA, Islam MM, Pandey AK, Rahim NA. Global advancement of cooling technologies for PV systems: a review. Sol Energy. 2016;137:25–45.

    Article  Google Scholar 

  28. Tripanagnostopoulos Y, Nousia T, Souliotis M, Yianoulis P. Hybrid photovoltaic/thermal solar systems. Sol Energy. 2002;72:217–34.

    Article  CAS  Google Scholar 

  29. Rahul SR, Hariharan R. Performance study of solar photovoltaic thermal collector integrated with cooling system. Int J Emerg Eng Res Technol. 2004;2:132–45.

    Google Scholar 

  30. Tiwari A, Sodha MS. Performance evaluation of solar PV/T system: an experimental validation. Sol Energy. 2006;80:751–9.

    Article  CAS  Google Scholar 

  31. Tonui JK, Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low cost performance improvements. Sol Energy. 2007;81:498–511.

    Article  Google Scholar 

  32. Joshi AS, Tiwari A, Tiwari GN, Dincer I, Reddy BV. Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int J Therm Sci. 2009;48:154–64.

    Article  CAS  Google Scholar 

  33. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Mahdavi AM. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl Energy. 2010;87:2328–39.

    Article  Google Scholar 

  34. Singh GK, Agrawal S, Tiwari A. Analysis of different types of hybrid photovoltaic thermal air collectors: a comparative study. J Fundam Renew Energy Appl. 2012;2:1–4.

    Article  Google Scholar 

  35. Baloch AAB, Bahaidarah HMS, Gandhidasan P, Al-Sulaiman FA. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energ Convers Manag. 2015;103:14–27.

    Article  Google Scholar 

  36. Saygin H, Nowzari R, Mirzaei N, Aldabbagh LBY. Performance evaluation of a modified PV/T solar collector: a case study in design and analysis of experiment. Sol Energy. 2016;141:210–21.

    Article  Google Scholar 

  37. Mojumder JC, Ong HC, Chong WT, Izadyar N, Shamshirband S. The intelligent forecasting of the performances in PV/T collectors based on soft computing method. Renew Sust Energ Rev. 2017;72:1366–78.

    Article  Google Scholar 

  38. Mays A, Ammar R, Hawa M, Akroush MA, Hachem F, Khaled M, et al. Improving photovoltaic module using finned plate of aluminum. Energy Proc. 2017;119:812–7.

    Article  Google Scholar 

  39. Hasan IA. Enhancement the performance of PV module by using fins as heat sink. J Eng Technol. 2018;36(7):798–805.

    Google Scholar 

  40. Grubišić-Čabo F, Nižetić S, Marinić Kragić I, Čoko D. Further progress in the research of fin-based passive cooling technique for the free-standing silicon photovoltaic modules. Int J Energ Res. 2019;43(8):3475–95.

    Article  Google Scholar 

  41. Parkunam N, Pandiyan L, Navaneethakrishnan G, Arul S, Vijayan V. Experimental analysis on passive cooling of flat photovoltaic module with heat sink and wick structure. Energ Source A. 2020;42(6):653–63.

    Article  Google Scholar 

  42. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. Hoboken: Wiley; 2007.

    Google Scholar 

  43. Hernandez-Perez JG, Carrillo JG, Bassam A, Banuelos MF, Patino-Lopez LD. A new passive PV heatsink design to reduce efficiency losses: a computational and experimental evaluation. Renew Energy. 2020;147(1):1209–20.

    Article  Google Scholar 

  44. Elbreki AM, Sopian K, Fazlizan A, Ibrahim A. An innovative technique of passive cooling PV module using lapping fins and planner reflector. Case Stud Therm Eng. 2020;19:100607.

    Article  Google Scholar 

  45. Kim J, Nam Y. Study on the cooling effect of attached fins on PV using CFD simulation. Energies. 2019;12:758.

    Article  CAS  Google Scholar 

  46. Kim J, Bae S, Yu Y, et al. Experimental and numerical study on the cooling performance of fins and metal mesh attached on a photovoltaic module. Energies. 2020;13(1):85.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Anser Bashir.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amber, K.P., Akram, W., Bashir, M.A. et al. Experimental performance analysis of two different passive cooling techniques for solar photovoltaic installations. J Therm Anal Calorim 143, 2355–2366 (2021). https://doi.org/10.1007/s10973-020-09883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09883-6

Keywords

  • Photovoltaic
  • Module temperature
  • Passive cooling
  • Efficiency