Skip to main content
Log in

Mixed thermomagnetic convection of ferrofluid in a porous cavity equipped with rotating cylinders: LTE and LTNE models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the impressions of the MHD and porous medium on mixed convection of Fe3O4-water nanofluid in a cavity with rotating cylinders in three different temperature cases with local thermal equilibrium and local thermal non-equilibrium approaches were studied. The effect of the presence of cylinders in three different temperature cases to improve the heat transfer rate was investigated. A finite volume method was used to solve equations. The Richardson, Hartmann, and Darcy numbers ranges are 1 ≤ Ri ≤ 100, 0 ≤ Ha ≤ 30, 0.001 ≤ Da ≤ 0.1, respectively. The volume fraction of nanoparticles varies in the range of 0–3%. The results show that the use of porous media has a beneficial effect on increasing the heat transfer rate, but the combination of the porous medium and the magnetic field can increase or decrease the heat transfer. Also, the most effective and highest heat transfer rate was occurred at Da = 0.01 and Da = 0.1, respectively. In addition, when the cylinders are cold or hot, the highest and lowest heat transfer rates occur, respectively. Finally, it was concluded that the magnetic field could control the fluid flow inside the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Da:

Darcy number

Gr:

Grashof number

H :

Dimensionless inter-phase heat transfer coefficient

Ha:

Hartmann number

\( {\text{Nu}}\left( y \right) \) :

Local Nusselt number

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

Ri:

Richardson number

U :

Dimensionless velocity in the x-direction

V :

Dimensionless velocity in y-direction

X :

Dimensionless coordinate component in the x-direction

Y :

Dimensionless coordinate component in the y-direction

\( \vec{b}_{0} \) :

Induced field (T)

\( B_{0} \) :

Magnitude of magnetic field (T)

\( C_{p} \) :

Specific heat capacity (J kg−1 K−1)

\( q^{\prime\prime} \) :

Mean heat flux (W m−2)

\( q^{\prime\prime}\left( x \right) \) :

Local heat flux (W m−2)

\( \vec{F} \) :

Lorentz force vector (N m−3)

g :

Gravity (m s−2)

h :

Inter-phase heat transfer coefficient (W m−2 K)

\( h\left( y \right) \) :

Local heat transfer coefficient (W m−2 K)

J :

Current density (A m−2)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability (m−2)

L :

Length of the cavity (m)

p :

Pressure (Pa)

R :

Radius of cylinders (m)

T :

Temperature (K)

u :

Velocity in the x-direction (m s−2)

v :

Velocity in y-direction (m s−2)

x :

Coordinate component in the x-direction

y :

Coordinate component in the y-direction

\( \beta \) :

Thermal expansion coefficient (1 K−1)

\( \Gamma \) :

Dimensionless thermal diffusivity

\( \gamma \) :

Dimensionless thermal conductivity of porous medium

\( \varepsilon \) :

Porosity

\( \theta \) :

Dimensionless temperature

\( \vartheta \) :

Kinematic viscosity (m2 s−1)

\( \mu \) :

Dynamic viscosity (kg m−1 s−1)

\( \rho \) :

Density (kg m−3)

\( \sigma \) :

Electrical conductivity (S m−1)

\( \varphi \) :

Volume fraction

\( \psi \) :

Dimensionless stream function

\( \omega \) :

Angular velocity (rad s−1)

\( \Omega \) :

Dimensionless angular velocity

\( \alpha \) :

Thermal diffusivity (m2 s−1)

AC:

Adiabatic cylinders

ave:

Average

c:

Cold

CC:

Cold cylinders

f:

Fluid

h:

Hot

HC:

Hot cylinders

LC:

Lower cylinder

LTE:

Local thermal equilibrium

LTNE:

Local thermal non-equilibrium

nf:

Nanofluid

p:

Particle

s:

Solid

UC:

Upper cylinder

References

  1. Biswas N, Manna NK. Enhanced convective heat transfer in lid-driven porous cavity with aspiration. Int J Heat Mass Trans. 2017;114:430–52.

    Article  Google Scholar 

  2. Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Effect of uniform inclined magnetic field on mixed convection in a lid driven cavity having a horizontal porous layer saturated with a ferrofluid. Int J Heat Mass Trans. 2017;114:1086–97.

    Article  CAS  Google Scholar 

  3. Chen YY, Li BW, Zhang JK, Qian ZD. Influences of radiative characteristics on free convection in a saturated porous cavity under thermal non-equilibrium condition. Int Commun Heat Mass Trans. 2018;95:80–91.

    Article  Google Scholar 

  4. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Trans. 2018;126:184–91.

    Article  CAS  Google Scholar 

  5. Shi L, He Y, Hu Y, Wang X. Thermophysical properties of Fe3O4-CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Convers Manag. 2018;177:249–57.

    Article  CAS  Google Scholar 

  6. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of alumina-water nanofluid in an open cavity having multiple porous layers. Int J Heat Mass Trans. 2018;125:648–57.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Trans. 2018;118:823–31.

    Article  CAS  Google Scholar 

  8. Kareem AK, Gao S. A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder. Int Commun Heat Mass Trans. 2018;90(9):44–55.

    Article  CAS  Google Scholar 

  9. Chen S, Gong W, Yan Y. Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media. Int J Heat Mass Trans. 2018;124:368–80.

    Article  Google Scholar 

  10. Sheremet MA, Pop I. Effect of local heater size and position on natural convection in a tilted nanofluid porous cavity using LTNE and Buongiorno’s models. J Mol Liq. 2018;266:19–28.

    Article  CAS  Google Scholar 

  11. Selimefendigil F, Öztop HF. Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity. Int Commun Heat Mass Trans. 2018;95:182–96.

    Article  CAS  Google Scholar 

  12. Sajjadi H, Amiri Delouei A, Atashafrooz M, Sheikholeslami M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Trans. 2018;126:489–503.

    Article  CAS  Google Scholar 

  13. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Trans. 2018;119:939–61.

    Article  CAS  Google Scholar 

  14. Benos L, Sarris IE. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int J Heat Mass Trans. 2019;130:862–73.

    Article  CAS  Google Scholar 

  15. Kefayati GHR. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part I: study of fluid flow, heat and mass transfer). Energy. 2016;107:889–916.

    Article  Google Scholar 

  16. Hashim I, Alsabery AI, Sheremet MA, Chamkha AJ. Numerical investigation of natural convection of Al2O3-water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model. Adv Powder Technol. 2019;30:399–414.

    Article  CAS  Google Scholar 

  17. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J Magn Magn Mater. 2018;452:193–204.

    Article  CAS  Google Scholar 

  18. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    Article  CAS  Google Scholar 

  19. Hatami M, Zhou J, Geng J, Jing D. Variable magnetic field (VMF) effect on the heat transfer of a half-annulus cavity filled by Fe3O4-water nanofluid under constant heat flux. J Magn Magn Mater. 2018;451:173–82.

    Article  CAS  Google Scholar 

  20. Biswas N, Manna NK, Datta P, Mahapatra PS. Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu-water nanofluid. Powder Technol. 2018;326:356–69.

    Article  CAS  Google Scholar 

  21. Wang G, Zhang J. Thermal and power performance analysis for heat transfer applications of nanofluids in flows around cylinder. Appl Therm Eng. 2017;112:61–72.

    Article  CAS  Google Scholar 

  22. Bahiraei Mehdi, Mazaheri Nima, Rizehvandi Ali. Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl Therm Eng. 2019;149:588–601.

    Article  CAS  Google Scholar 

  23. Rafati M, Hamidi AA, Shariati Niaser M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl Therm Eng. 2012;45–46:9–14.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M, Ganji DD. Chapter 1: Application of nanofluids, applications of semi analytical methods for nanofluid flow and heat transfer. Amsterdam: Elsevier; 2018. p. 1–44.

    Book  Google Scholar 

  25. Xu HJ, Xing ZB, Wang FQ, Cheng ZM. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem Eng Sci. 2019;195:462–83.

    Article  CAS  Google Scholar 

  26. Baragh S, Shokouhmand H, Mousavi Ajarostaghi H. Experiments on mist flow and heat transfer in a tube fitted with porous media. Int J Therm Sci. 2019;137:388–98.

    Article  Google Scholar 

  27. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Trans. 2017;107:778–91.

    Article  CAS  Google Scholar 

  28. Jha BK, Oni MO. Impact of mode of application of magnetic field on rate of heat transfer of rarefied gas flows in a microtube. Alex Eng J. 2018;57:1955–62.

    Article  Google Scholar 

  29. Kabeel AE, El-Said EMS, Dafea SA. A review of magnetic field effects on flow and heat transfer in liquids: present status and future potential for studies and applications. Renew Sustain Energy Rev. 2015;45:830–7.

    Article  Google Scholar 

  30. Islam S, Mahmud S, Biglarbegian M, Tasnim SH. Influence of a magnetic field on the energy, work, and heat flux of a multi-plate thermoacoustic system. Int Commun Heat Mass Trans. 2017;86:150–8.

    Article  Google Scholar 

  31. Talebizadehsardari P, Shahsavar A, Toghraie D, Barnoon P. An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field. Phys Stat Mech Appl. 2019;534:122129.

    Article  CAS  Google Scholar 

  32. Ruhani B, Barnoon P, Toghraie D. Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Phys Stat Mech Appl. 2019;525:616–27.

    Article  CAS  Google Scholar 

  33. Rostami S, Toghraie D, Shabani B, Sina N, Barnoon P. Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09458-5.

    Article  Google Scholar 

  34. Li Z, Barnoon P, Toghraie D, Balali Dehkordi R, Afrand M. Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: Two phase approach. Adv Powder Technol. 2019;30:2666–85.

    Article  CAS  Google Scholar 

  35. Barnoon P, Toghraie D, Rostami S. Optimization of heating-cooling generators with porous components/cryogenic conductors on natural convection in a porous enclosure: using different two-phase models and single-phase model and using different designs. Int Commun Heat Mass Trans. 2020;11:104472.

    Article  CAS  Google Scholar 

  36. Barnoon P, Toghraie D, Balali Dehkordi R, Afrand M. Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. Int Commun Heat Mass Trans. 2019;108:104285.

    Article  CAS  Google Scholar 

  37. Öztop HF, Estellé P, Yan WM, Al-Salem K, Mahian O. A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int Commun Heat Mass Trans. 2015;60:37–44.

    Article  CAS  Google Scholar 

  38. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  39. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: application. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  40. Orooji Y, Ghanbari M, Amiri O, Salavati-Niasari M. Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J Hazardous Mater. 2020;389:122079.

    Article  CAS  Google Scholar 

  41. Sisi J, Fathinia M, Khataee A, Orooji Y, Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J Mol Liquids. 2020;308:113018.

  42. SGhasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A, Orooji Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDHCNTs modified graphite cathode for degradation of cefazolin. J Enviro Manag. 2020;267:110629.

  43. Mehdizadeh P, Orooji Y, Amiri O, Salavati-Niasari M, Moayedi H, Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. J Clean Prod. 2020;252:11976.

  44. Ho CJ, Hsieh YJ, Rashidi S, Orooji Y, Yan WM. Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study. Int Commun Heat Mass Trans. 2020;112:104477.

  45. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comput Math Appl. 2019;77:662–92.

    Article  Google Scholar 

  46. Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci. 2019;201:247–63.

    Article  CAS  Google Scholar 

  47. Wong KC, Saeid NH. Numerical study of mixed convection on jet impingement cooling in a horizontal porous layer under local thermal non-equilibrium conditions. Int J Therm Sci. 2009;48:860–70.

    Article  CAS  Google Scholar 

  48. Mehmood Z. Numerical simulations and linear stability analysis of mixed thermomagnetic convection through two lid-driven entrapped trapezoidal cavities enclosing ferrofluid saturated porous medium. Int Commun Heat Mass Trans. 2019;109:104345.

    Article  CAS  Google Scholar 

  49. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018;325:78–91.

    Article  CAS  Google Scholar 

  50. Chen YY, Li BW, Zhang JK. Spectral collocation method for natural convection in a square porous cavity with local thermal equilibrium and non-equilibrium models. Int J Heat Mass Trans. 2016;96:84–96.

    Article  Google Scholar 

  51. Sivaraj C, Sheremet MA. MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351–60.

    Article  CAS  Google Scholar 

  52. Pak BC, Cho Y. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):141–70.

    Google Scholar 

  53. Choi SU, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles, Argon National Lab, Il (United State); 1995.

  54. Raza J, Rohni AM, Omar Z. MHD flow and heat transfer of cu–water nanofluid in a semi porous channel with stretching walls. Int J. Heat Mass Transf. 2016;103:336–40.

    Article  CAS  Google Scholar 

  55. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  56. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56.

    Article  CAS  Google Scholar 

  57. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    Article  CAS  Google Scholar 

  58. Santhosh Kumar D, Dass AK, Dewan A. Analysis of non-Darcy models for mixed convection in a porous cavity using a multigrid approach. Numer Heat Transf Part A. 2009;56:685–708.

    Article  Google Scholar 

  59. Ho CJ, Liu WK, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53.

    Article  CAS  Google Scholar 

  60. Motlagh SY, Soltanipour H. Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnoon, P., Toghraie, D., Salarnia, M. et al. Mixed thermomagnetic convection of ferrofluid in a porous cavity equipped with rotating cylinders: LTE and LTNE models. J Therm Anal Calorim 146, 187–226 (2021). https://doi.org/10.1007/s10973-020-09866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09866-7

Keywords

Navigation