Skip to main content

Probing the multifunctional behaviour of barium zirconate/barium titanate/epoxy resin hybrid nanodielectrics

Abstract

In this study, hybrid composite nanodielectrics of epoxy resin and BaZrO3/BaTiO3 ceramic nanoparticles were prepared via a mixing process varying the filler content. Composites’ morphology was studied via scanning electron microscopy, and in all cases, fine nanodispersions were detected. The electrical response of the employed nanofillers, as well as of the produced hybrid composite specimens, was examined by means of broadband dielectric spectroscopy in a wide temperature and frequency range. The thermally varying polarization of the embedded nanoparticles induces functionality to the prepared composite systems, due to the thermally triggered structural transitions of BaZrO3 and BaTiO3. Aiming to investigate these structural transitions, samples were studied by means of X-Ray diffraction with temperature as a parameter. Finally, the ability of the examined nanosystems to store and harvest energy under various conditions was determined and discussed in tandem with the mutual interactions of the occurring physical mechanisms at specific temperature ranges.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Psarras GC. ‘Energy materials’ … the role of polymers. Express Polym Lett. 2016;10:721.

    Google Scholar 

  2. 2.

    Manika GC, Psarras GC. Energy storage and harvesting in BaTiO3/epoxy nanodielectrics. High Volt. 2016;1:151–7.

    Google Scholar 

  3. 3.

    Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A. 2015;3:14929–41.

    CAS  Google Scholar 

  4. 4.

    Zhu Y, Yuan S, Lu C, Xie B, Fan P, Marwat MA, Ma W, Liu K, Liu H, Zhang H. High discharged energy density of nanocomposites filled with double-layered core-shell nanoparticles by reducing space charge polarization. Ceram Int. 2018;44:19330–7.

    CAS  Google Scholar 

  5. 5.

    Thomas P, Ashokbabu A, Vaish R. Structural, thermal and dielectric properties and thermal degradation kinetics of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09105-8.

    Article  Google Scholar 

  6. 6.

    Krawczak P. Polymer composites: evolve towards multifunctionality or perish. Express Polym Lett. 2019;13:771.

    Google Scholar 

  7. 7.

    Lyagaeva J, Danilov N, Vdovin G, Bu J, Medvedev D, Demin A, Tsiakaras P. A new Dy-doped BaCeO3–BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. J Mater Chem A. 2016;4:15390–9.

    CAS  Google Scholar 

  8. 8.

    Mochane MJ, Mokhena TC, Motaung TE, Linganiso LZ. Shape-stabilized phase change materials of polyolefin/wax blends and their composites. J Therm Anal Calorim. 2020;139:2951–63.

    CAS  Google Scholar 

  9. 9.

    Raj CR, Suresh S, Bhavsar RR, Singh VK. Recent developments in thermo-physical property enhancement and applications of solid–solid phase change materials. J Therm Anal Calorim. 2020;139:3023–49.

    CAS  Google Scholar 

  10. 10.

    Kök M, Al-Jaf AOA, Cirak ZD, Qader IN, Özen E. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J Therm Anal Calorim. 2020;139:3405–13.

    Google Scholar 

  11. 11.

    Bi L, Shafi SP, Traversa E. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs). J Mater Chem A. 2015;3:5815–9.

    CAS  Google Scholar 

  12. 12.

    Sutapun M, Vittayakorn W, Muanghlua R, Vittayakorn N. High piezoelectric response in the new coexistent phase boundary of 0.87BaTiO3–(0.13-x)BaZrO3−xCaTiO3. Mater Des. 2015;86:564–74.

    CAS  Google Scholar 

  13. 13.

    Bi L, Traversa E. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. J Mater Res. 2014;29:1–15.

    CAS  Google Scholar 

  14. 14.

    Yang X, Li D, Ren ZH, Zeng RG, Gong SY, Zhou DK, Tian H, Li JX, Xu G, Shen ZJ, Han GR. Colossal dielectric performance of pure barium titanate ceramics consolidated by spark plasma sintering. RSC Adv. 2016;6:75422–9.

    CAS  Google Scholar 

  15. 15.

    Kulwicki BM. Ceramic sensors and transducers. J Phys Chem Solids. 1984;45:1015–31.

    CAS  Google Scholar 

  16. 16.

    Sakayori K, Matsui Y, Abe H, Nakamura E, Kenmoku M, Hara T, Ishikawa D, Kokubu A, Hirota K, Ikeda T. Curie temperature of BaTiO3. Jpn J Appl Phys. 1995;34:5443.

    CAS  Google Scholar 

  17. 17.

    Patsidis AC, Psarras GC. Structural transition, dielectric properties and functionality in epoxy resin—Barium titanate nanocomposites. Smart Mater Struct. 2013;22:5006.

    Google Scholar 

  18. 18.

    Bajpai KK, Sreenivas K, Thakur OP, James AR, Shukla AK. Influence of Cd doping on the electro-strain of barium zirconate titanate ceramics. Ceram Int. 2017;43:1963–7.

    CAS  Google Scholar 

  19. 19.

    Dixit A, Majumder SB, Dobal PS, Katiyar RS, Bhalla AS. Phase transition studies of sol–gel deposited barium zirconate titanate thin films. Thin Solid Films. 2004;447–448:284–8.

    Google Scholar 

  20. 20.

    Nanakorn N, Jalupoom P, Vaneesorn N, Thanaboonsombut A. Dielectric and ferroelectric properties of Ba(ZrxTi1−x)O3 ceramics. Ceram Int. 2008;34:779–82.

    CAS  Google Scholar 

  21. 21.

    Moura F, Simões AZ, Stojanovic BD, Zaghete MA, Longo E, Varela JA. Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method. J Alloys Compd. 2008;462:129–34.

    CAS  Google Scholar 

  22. 22.

    Charoonsuk P, Baitahe R, Vittayakorn W, Atiwongsangthong N, Muanghua R, Seeharaj P, Vittayakorn N. Synthesis of monodispersed perovskite barium zirconate (BaZrO3) by the sonochemical method. Ferroelectrics. 2013;453:54–61.

    CAS  Google Scholar 

  23. 23.

    Macario LR, Moreira ML, Andrés J, Longo E. An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions. Cryst Eng Commun. 2010;12:3612–9.

    CAS  Google Scholar 

  24. 24.

    Park M-B, Cho N-H, Kim C-D, Lee S-K. Phase transition and physical characteristics of nanograined BaTiO3 ceramics synthesized from surface-coated nanopowders. J Am Ceram Soc. 2004;87:510–2.

    CAS  Google Scholar 

  25. 25.

    Chávez E, Fuentes S, Zarate RA, Padilla-Campos L. Structural analysis of nanocrystalline BaTiO3. J Mol Struct. 2010;984:131–6.

    Google Scholar 

  26. 26.

    Sakabe Y, Wada N, Hamaji Y. Grain size effects on dielectric properties and crystal structure of fine-grained BaTiO3 ceramics. J Korean Phys Soc. 1998;32:S260–4.

    CAS  Google Scholar 

  27. 27.

    Baeten F, Derks B, Coppens W, van Kleef E. Barium titanate characterization by differential scanning calorimetry. J Eur Ceram Soc. 2006;26:589–92.

    CAS  Google Scholar 

  28. 28.

    Mandal TK. Characterization of tetragonal BaTiO3 nanopowders prepared with a new soft chemistry route. Mater Lett. 2007;61:850–4.

    CAS  Google Scholar 

  29. 29.

    Gatos KG, Martínez Alcázar JG, Psarras GC, Thomann R, Karger-Kocsis J. Polyurethane latex/water dispersible boehmite alumina nanocomposites: thermal, mechanical and dielectrical properties. Compos Sci Technol. 2007;67:157–67.

    CAS  Google Scholar 

  30. 30.

    Psarras GC. Hopping conductivity in polymer matrix–metal particles composites. Compos Part A Appl Sci Manuf. 2006;37:1545–53.

    Google Scholar 

  31. 31.

    Jonscher AK. Dielectric relaxation in solids. J Phys Appl Phys. 1999;32:R57–70.

    CAS  Google Scholar 

  32. 32.

    Dyre JC, Schrøder TB. Universality of ac conduction in disordered solids. Rev Mod Phys. 2000;72:873–92.

    Google Scholar 

  33. 33.

    Tsangaris GM, Psarras GC, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci. 1998;33:2027–37.

    CAS  Google Scholar 

  34. 34.

    Grohens Y, Hamon L, Reiter G, Soldera A, Holl Y. Some relevant parameters affecting the glass transition of supported ultra-thin polymer films. Eur Phys J E. 2002;8:217–24.

    CAS  PubMed  Google Scholar 

  35. 35.

    Hartmann L, Gorbatschow W, Hauwede J, Kremer F. Molecular dynamics in thin films of isotactic poly(methyl methacrylate). Eur Phys J E. 2002;8:145–54.

    CAS  PubMed  Google Scholar 

  36. 36.

    Rittigstein P, Torkelson JM. Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci B Polym Phys. 2006;44:2935–43.

    CAS  Google Scholar 

  37. 37.

    Mathioudakis GN, Patsidis AC, Psarras GC. Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim. 2014;116:27–33.

    CAS  Google Scholar 

  38. 38.

    Mijović J, Lee H, Kenny J, Mays J. Dynamics in polymer–silicate nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy. Macromolecules. 2006;39:2172–82.

    Google Scholar 

  39. 39.

    Kochervinskii VV, Malyshkina IA, Vorob’ev DV, Bessonova NP. Investigation of the mobility in poly(vinylidene fluoride) ferroelectric films with different structures. Phys Solid State. 2010;52:1976–84.

    CAS  Google Scholar 

  40. 40.

    Vryonis O, Anastassopoulos DL, Vradis AA, Psarras GC. Dielectric response and molecular dynamics in epoxy-BaSrTiO3 nanocomposites: effect of nanofiller loading. Polymer. 2016;95:82–90.

    CAS  Google Scholar 

  41. 41.

    El-Tantawy F, Kamada K, Ohnabe H. On the ‘curiosity’ of electrical self-heating, static charge and electromagnetic shielding effectiveness from carbon black/aluminium flakes reinforced epoxy-resin composites. Polym Int. 2002;51:635–46.

    CAS  Google Scholar 

  42. 42.

    Sung YK, El-Tantawy F. Novel smart polymeric composites for thermistors and electromagnetic wave shielding effectiveness from TiC loaded styrene-butadiene rubber. Macromol Res. 2002;10:345–58.

    CAS  Google Scholar 

  43. 43.

    Ioannou G, Patsidis A, Psarras GC. Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos Part A Appl Sci Manuf. 2011;42:104–10.

    Google Scholar 

  44. 44.

    Cowley RA, Gvasaliya SN, Lushnikov SG, Roessli B, Rotaru GM. Relaxing with relaxors: a review of relaxor ferroelectrics. Adv Phys. 2011;60:229–327.

    CAS  Google Scholar 

  45. 45.

    Tagantsev AK, Vaideeswaran K, Vakhrushev SB, Filimonov AV, Burkovsky RG, Shaganov A, Andronikova D, Rudskoy AI, Baron AQR, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J-H, Setter N. The origin of antiferroelectricity in PbZrO3. Nat Commun. 2013;4:2229.

    CAS  PubMed  Google Scholar 

  46. 46.

    Manika GC, Psarras GC. Barium titanate/epoxy resin composite nanodielectrics as compact capacitive energy storing systems. Express Polym Lett. 2019;13:749–58.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. C. Psarras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsikriteas, Z.M., Manika, G.C., Patsidis, A.C. et al. Probing the multifunctional behaviour of barium zirconate/barium titanate/epoxy resin hybrid nanodielectrics. J Therm Anal Calorim 142, 231–243 (2020). https://doi.org/10.1007/s10973-020-09855-w

Download citation

Keywords

  • Ferroelectrics
  • Dielectric relaxation
  • Energy storage
  • Multifunctionality