Skip to main content
Log in

Hydrothermal, energy and emissions characteristics assessment of impinging flame jet on an oval flat tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flow, heat transfer and emissions features of a methane–air premixed impinging flame jet on an oval flat tube involving both smooth and concave surfaces are numerically investigated. The effects of important parameters such as Reynolds number (Re = 400, 800, 1200, 1600 and 2000) and nozzle-to-tube distance (H/D = 3, 5 and 8) on streamlines, pressure coefficient temperature field, surface heat flux, energy efficiency and pollutants formation are evaluated. Results reveal that at higher Reynolds number, a larger recirculation zone beyond the concave surface is generated, the flame direction becomes horizontal and maximum temperature is shifted far away from stagnation point. The highest value of pressure coefficient is found at Re = 400 occurring on stagnation point. Under constant Reynolds number, the maximum temperature value belongs to configuration with less H/D in which the thermal boundary layer becomes narrower. Except for Re = 2000, the highest heat flux values are associated with stagnation point, while a considerable off-stagnation heat flux is detected for Re = 2000. More amount of energy releases for less H/D at lower Reynolds number, while an inverse behavior is observed at higher ones. Simulations show that the best energy efficiency is found at Re = 400 and H/D = 3. The production of CO species is of high remarkable value at Re = 400 when the space between nozzle and tube is reduced. The highest value of NOx production is distinguished at the highest H/D and lowest Re (i.e., H/D = 8 and Re = 400), while the concentration of UHC remarkably increases with rising Reynolds number, especially for higher H/D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

c p :

Specific heat (kJ kg−1 K−1)

C p :

Pressure coefficient

D j,m :

Mass diffusion coefficient

E :

Total energy (kJ kg−1)

L :

Computational domain length (m)

h :

Enthalpy (J kg−1)

J :

Diffusion flux (kg m−2 s−1)

k :

Thermal conductivity (W m−1 K−1)

m :

Mass (kg)

M :

Molecular weight (kg kmol−1)

p :

Pressure (Pa)

q″:

Heat flux (W m−2)

Q w :

Total heat energy on wall (W)

R j :

Production/consumption rate of the ith species (kg m−3 s−1)

R ij :

Reaction rate (kmol m−3 s−1)

Re:

Reynolds number

s :

Curvilinear coordinate

S h :

Volumetric heat source (kg m−4 s−1)

T :

Temperature (K)

V :

Velocity vector (m s−1)

x, y :

Coordinate axes

Y :

Mass fraction

η :

Energy efficiency

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

f:

Fuel

in:

Inlet

j:

jth species

CFD:

Computational fluid dynamics

IFJ:

Impinging flame jet

LHV:

Low heating value

UHC:

Unburned hydrocarbon

References

  1. Baukal CE Jr. Flame impingement, oxygen-enhanced combustion. Boca Raton: CRC Press; 2013. p. 261–98.

    Book  Google Scholar 

  2. Dong LL, Leung CW, Cheung CS. Heat transfer from an impinging premixed butane/air slot flame jet. Int J Heat Mass Transf. 2002;45:979–92.

    Article  CAS  Google Scholar 

  3. Dong LL, Leung CW, Cheung CS. Heat-transfer characteristics of a premixed butane/air flame jet impinging on an inclined flat-surface. Heat Mass Transf. 2002;39:19–26.

    Article  CAS  Google Scholar 

  4. Dong LL, Leung CW, Cheung CS. Heat-transfer and wall-pressure characteristics of twin premixed butane/air flame jets. Int J Heat Mass Transf. 2004;47:489–500.

    Article  CAS  Google Scholar 

  5. Shuhn-Shyurng H, Yung-Chang K. Effects of heating height on flame appearance, temperature field and efficiency of an impinging laminar-jet flame used in domestic gas-stoves. Energy Convers Manag. 2004;45:1583–9.

    Article  Google Scholar 

  6. Kwok LC, Leung CW, Cheung CS. Heat-transfer characteristics of slot and round premixed impinging flame jets. Exp Heat Transf. 2003;16:111–37.

    Article  CAS  Google Scholar 

  7. Chander S, Ray A. An experimental and numerical study of stagnation point heat transfer for methane/air laminar flame impinging on a flat surface. Int J Heat Mass Transf. 2008;51:3595–607.

    Article  CAS  Google Scholar 

  8. Chander S, Ray A. Experimental and numerical study on the occurrence of off-stagnation peak in heat flux for laminar methane/air flame impinging on a flat surface. Int J Heat Mass Transf. 2011;54:1179–86.

    Article  CAS  Google Scholar 

  9. Remie MJ, Särner G, Cremers MFG, Omrane A, Schreel KRAM, Aldén LEM. Heat-transfer distribution for an impinging laminar flame jet to a flat plate. Int J Heat Mass Transf. 2008;51:3144–52.

    Article  CAS  Google Scholar 

  10. Remie MJ, Cremers MFG, Schreel KRAM, de Goey LPH. Analysis of the heat transfer of an impinging laminar flame jet. Int J Heat Mass Transf. 2007;50:2816–27.

    Article  Google Scholar 

  11. Zhao Z, Wong TT, Leung CW. Impinging premixed butane/air circular laminar flame jet–influence of impingement plate on heat transfer characteristics. Int J Heat Mass Transf. 2004;47:5021–31.

    Article  CAS  Google Scholar 

  12. Hustad E, Sonju OK. Heat transfer to pipes submerged in turbulent jet diffusion flames, heat transfer in radiating and combusting systems. Berlin: Springer; 1991. p. 474–90.

    Book  Google Scholar 

  13. Mohr JW, Yagoobi JS, Page RH. Combustion measurements from an impinging radial jet reattachment flame. Combust Flame. 1996;47:69–80.

    Article  Google Scholar 

  14. Mohr JW, Yagoobi JS, Page RH. Heat transfer from a pair of radial jet reattachment flames. J Heat Transf. 1997;119:633–5.

    Article  CAS  Google Scholar 

  15. Dong LL, Leung CW, Cheung CS. Heat-transfer of a row of three butane/air flame jets impinging on a flat plate. Int J Heat Mass Transf. 2003;46:113–25.

    Article  CAS  Google Scholar 

  16. Mohr JW, Yagoobi JS, Page RH. Heat transfer and combustion characteristics of an array of radial jet reattachment flames. Combust Flame. 1996;125:955–64.

    Google Scholar 

  17. Agrawal GK, Chakraborty S, Som SK. Heat transfer characteristics of premixed flame impinging upwards to plane surfaces incline. Int J Heat Mass Transf. 2010;53:1899–907.

    Article  CAS  Google Scholar 

  18. Tajik AR, Hindasageri V. A numerical investigation on heat transfer and emissions characteristics of impinging radial jet reattachment combustion (RJRC) flame. Appl Term Eng. 2015;89:534–44.

    Article  CAS  Google Scholar 

  19. Jarray M, Chetehouna K, Gascoin N, Bey F. Ceramic panel heating under impinging methane-air premixed flame jets. Int J Therm Sci. 2016;107:184–95.

    Article  Google Scholar 

  20. Morad MR, Momeni A, Ebrahimi Fordoei A, Ashjaee M. Experimental and numerical study on heat transfer characteristics for methane/air flame impinging on a flat surface. Int J Therm Sci. 2016;110:229–40.

    Article  CAS  Google Scholar 

  21. Hindasageri V, Kuntikana P, Tajik AR, Vedula RP, Prabhu SV. Axis switching in impinging premixed methane–air flame jets. Appl Term Eng. 2016;107:144–53.

    Article  CAS  Google Scholar 

  22. Wei ZL, Zhen HS, Leung CW, Cheung CS, Huang ZH. Experimental and numerical study on the emission characteristics of laminar premixed biogas–hydrogen impinging flame. Fuel. 2017;1:11.

    Article  Google Scholar 

  23. Singh P, Chander S. Heat transfer and fluid flow characteristics of a pair of interacting dual swirling flame jets impinging on a flat surface. Int J Heat Mass Transf. 2018;124:90–108.

    Article  Google Scholar 

  24. Baukal CE Jr, Gebhart A. A review of empirical flame impingement heat transfer correlations. Int J Heat Fluid Flow. 1996;14:386–96.

    Article  Google Scholar 

  25. Viskanta R. Heat transfer to impinging isothermal gas and flame jets. Exp Therm Fluid Sci. 1993;6:111–34.

    Article  CAS  Google Scholar 

  26. Chander S, Ray A. Flame impingement heat transfer: a review. Energy Convers Manag. 2005;46:2803–37.

    Article  CAS  Google Scholar 

  27. Kuntikana P, Prabhu SV. Heat transfer investigations on methane-air premixed flame jet exiting from a circular nozzle and impinging over semi-cylindrical surfaces. Int J Therm Sci. 2018;128:105–23.

    Article  CAS  Google Scholar 

  28. He P, Chen X, Zhu P, Liu J, Fan G, Sui S, Lu Z, Dong C. Preparation and flame retardancy of reactive flame retardant for cotton fabric. J Therm Anal Calorim. 2018;132:1771–81.

    Article  CAS  Google Scholar 

  29. Huo S, Liu Zh, Wang J. Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine-trione and piperidine. J Therm Anal Calorim. 2020;139:1099–110.

    Article  CAS  Google Scholar 

  30. Yang Y, Xie Q, Tang X. Trace analyses of flame-retardant in pyrolysis of XPS foams and its revelation for flame-retardant optimization. J Therm Anal Calorim. 2018;132:1893–8.

    Article  CAS  Google Scholar 

  31. Ansys fluent theory guide, release 14.0; 2011.

  32. Verstteg HK, Malalasekera W. An introduction to computational fluid dynamics. Harlow: Pearson; 2007.

    Google Scholar 

  33. http://www.me.berkeley.edu/drm.

  34. Kumar SS, Hindasageri V, Prabhu SV. Effect of preheated mixture on heat transfer characteristics of impinging methane–air premixed flame jet. Int J Heat Mass Transf. 2015;86:550–62.

    Article  Google Scholar 

  35. Mashaei PR, Hosseinalipour SM, Esmailpour K. Numerical investigation of thermal mixing of shear thinning fluids in one-way opposing jets. J Comp Appl Res Mech Eng. 2014;2:95–103.

    Google Scholar 

  36. Duan Zh, Shen F, Cao X, Zhang J. Comprehensive effects of baffle configuration on the performance of heat exchanger with helical baffles. Nucl Eng Des. 2016;300:349–57.

    Article  CAS  Google Scholar 

  37. Yang J, Ma L, Liu J, Liu W. Thermal–hydraulic performance of a novel shell-and-tube oil cooler with multi-fields synergy analysis. Int J Heat Mass Transf. 2016;300:349–57.

    Google Scholar 

  38. Sharifi KH, Sabeti M, Rafiei M, Mohammadi AH, Shiraz L. Computational fluid dynamics (CFD) technique to study the effects of helical wire inserts on heat transfer and pressure drop in a double pipe heat exchanger. Appl Term Eng. 2018;128:898–910.

    Article  Google Scholar 

  39. Bahiraei M, Mashaei PR. Using nanofluid as a smart suspension in cooling channels with discrete heat sources. J Therm Anal Calorim. 2015;119:2079–91.

    Article  CAS  Google Scholar 

  40. Mashaei PR, Shahryari M, Madani S. Numerical hydrothermal analysis of water–Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126:891–904.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Mashaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashaei, P.R., Gharehghani, A. & Hosseinalipour, S.M. Hydrothermal, energy and emissions characteristics assessment of impinging flame jet on an oval flat tube. J Therm Anal Calorim 145, 3219–3233 (2021). https://doi.org/10.1007/s10973-020-09848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09848-9

Keywords

Navigation