Skip to main content
Log in

Optimization of film hole row locations of a nozzle guide vane using network approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fluid–thermal network simulations have been performed to optimize the each film hole row location of a high-pressure guide vane. In the present work, the optimized row locations were identified to minimize the coolant flow with different number of film holes configuration subjected to almost uniform surface temperature distribution on the nozzle guide vane. FlownexR2017 software was used to identify the optimal row location of a typical film-cooled vane. The results show that it is a useful simulation tool to obtain reduced pressure drop of film hole row in a relatively short turnaround time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

d:

Film hole diameter (mm)

V m :

Mainstream velocity (m s−1)

\(\dot{m}\) :

Coolant mass flow rate (kg s−1)

GA:

Genetic algorithm

NGV:

Nozzle guide vane

N:

Number of holes

SS:

Suction surface

PS:

Pressure surface

1D:

One-dimensional

References

  1. Maickel G, Jelisavcic N, Moral RJ, Sahoo D, Dulikravich GS, Martin TJ. Multi-objective design optimization of topology and performance of branching networks of cooling passages. Int J Therm Sci. 2007;46(11):1191–202.

    Article  Google Scholar 

  2. Francesco B, Mantero M, Gasnier T, Ronconi E. Analysis of heavy duty gas turbine stator-rotor cavity through 3D CFD-1D fluid network field measurements combined approach. In: Proceedings of ASME Turbo Expo, GT2016- 57629, 13–17 June 2016, Seoul, South Korea. https://doi.org/10.1115/gt2016-57629.

  3. Gladden, HJ, Livingood JNB. Procedure for scaling of experimental turbine vane airfoil temperatures from low to high gas temperatures. NASA TN D-6510, 1971.

  4. Sciubba E. Air-cooled gas turbine cycles part 1: an analytical method for the preliminary assessment of blade cooling flow rates. Energy. 2015;83:104–14.

    Article  Google Scholar 

  5. Chandran D, Prasad BVSSS. Conjugate heat transfer study of combined impingement and showerhead film cooling near NGV leading edge. Int J Rotat Mach. 2015;2015:315036.

    Article  Google Scholar 

  6. Rao KVLN, Prasad BVSS, Kanna Babu CH, Degaonkar GK. Numerical and experimental investigations on liner heat transfer in an aero engine combustion chamber. In: Proceedings of the Asian congress on gas turbines ACGT2016-091, 14–16 Nov 2016, Indian Institute of Technology Bombay, Mumbai, India.

  7. Lee KD, Kim KY. Shape optimization of a fan-shaped hole to enhance film-cooling effectiveness. Int J Heat Mass Transf. 2010;53(15–16):2996–3005.

    Article  Google Scholar 

  8. Lee KD, Kim KY. Surrogate based optimization of a laidback fan-shaped hole for film-cooling. Int J Heat Fluid Flow. 2011;32(1):226–38.

    Article  CAS  Google Scholar 

  9. Lee KD, Kim KY. Objective function proposed for optimization of convective heat transfer devices. Int J Heat Mass Transf. 2012;55(11–12):2792–9.

    Article  Google Scholar 

  10. Lee KD, Choi DW, Kim KY. Optimization of ejection angles of double-jet film-cooling holes using RBNN model. Int J Therm Sci. 2013;73:69–78.

    Article  Google Scholar 

  11. Lee KD, Kim SM, Kim KY. Multi-objective optimization of a row of film cooling holes using an evolutionary algorithm and surrogate modeling. Numer Heat Transf A Appl. 2013;63(8):623–41.

    Article  CAS  Google Scholar 

  12. Nowak G, Wróblewski W. Cooling system optimization of turbine guide vane. Appl Therm Eng. 2009;29(2–3):567–72.

    Article  Google Scholar 

  13. Nowak G. Optimization of an airfoil cooling system using a Pareto dominance approach. Eng Optim. 2010;42(2):157–69.

    Article  Google Scholar 

  14. Nowak G, Wróblewski W. Optimization of blade cooling system with use of conjugate heat transfer approach. Int J Therm Sci. 2011;50(9):1770–81.

    Article  CAS  Google Scholar 

  15. Stoakes P, Ekkad SV. Optimized impingement configurations for double wall cooling applications. In: Proceedings of ASME turbo expo, Vancouver, BC, Canada, 6–10 June, GT2011-46143.

  16. Yu K, Yang X, Yue Z. Aerodynamic and heat transfer design optimization of internally cooling turbine blade based different surrogate models. Struct Multidiscip Optim. 2011;44:75–83.

    Article  Google Scholar 

  17. Girardeau J, Pailhes J, Sebastian P, Pardo F, Nadeau JP. Turbine blade cooling system optimization. ASME J Turbomach. 2013;135(6):0610201.

    Article  Google Scholar 

  18. Johnson JJ, King PI, Clark JP, Ooten MK. Genetic algorithm optimization of a high-pressure turbine vane pressure side film cooling array. ASME J Turbomach. 2013;136(1):0110111.

    Google Scholar 

  19. Kim KM, Moon H, Park JS, Cho HH. Optimal design of impinging jets in an impingement/effusion cooling system. Energy. 2014;66:839–48.

    Article  Google Scholar 

  20. Nagaiah NR, Geiger CD. Evolutionary numerical simulation approach for design optimization of gas turbine blade cooling channels. Int J Simul Multi Des Optim. 2014;5(A22):1–14.

    Google Scholar 

  21. Nagaiah NR, Geiger CD. Application of evolutionary algorithms to optimize cooling channels. Int J Simul Multidiscip Des Optim. 2019;10(A4):1–13.

    Google Scholar 

  22. Ayoubi CEI, Ghaly WS, Hassan IG. Aerothermal optimization and experimental verification for discrete turbine airfoil film cooling. AIAA J Propuls Power. 2015;31(2):543–58.

    Article  Google Scholar 

  23. Ayoubi CEI, Ghaly WS, Hassan IG. Aerothermal shape optimization for a double row of discrete film cooling holes on the suction surface of a turbine vane. Eng Optim. 2015;47(10):1384–404.

    Article  Google Scholar 

  24. Lei L, Sundén B, Wang S. Optimization of the blade profile and cooling structure in a gas turbine stage considering both the aerodynamics and heat transfer. Heat Transf Res. 2015;46(7):599–629.

    Article  Google Scholar 

  25. Chi Z, Ren J, Jiang H, Zang S. Geometrical optimization and experimental validation of a tripod film cooling hole with asymmetric side holes. ASME J Heat Transf. 2016;138(6):0617011.

    Article  Google Scholar 

  26. Mazaheri K, Zeinalpour M, Bokaei HR. Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology. Appl Therm Eng. 2016;103:1228–36.

    Article  Google Scholar 

  27. Ravi D, Parammasivam KM. Taguchi based regression analysis of end-wall film cooling in a gas turbine cascade with single row of holes. Int J Turbo Jet-Engines. 2016;33(3):275–92.

    Article  Google Scholar 

  28. Xie G, Song Y, Sundén B. Computational optimization of the internal cooling passages of a guide vane by a gradient-based algorithm. Numer Heat Transf A Appl. 2016;69(12):1311–31.

    Article  Google Scholar 

  29. Wang C, Zhang J, Zhou J. Optimization of a fan-shaped hole to improve film cooling performance by RBF neural network and genetic algorithm. Aerosp Sci Technol. 2016;58:18–25.

    Article  Google Scholar 

  30. Dolati S, Amanifard N, Deylami HM. Numerical study and GMDH-type neural networks modeling of plasma actuator effects on the film cooling over a flat plate. Appl Therm Eng. 2017;123:734–45.

    Article  Google Scholar 

  31. Jiang Y, Hongfei L, Guoqiang Y, Qun Z, Xiliang X. Aero-thermal optimization on multi-rows film cooling of a realistic marine high pressure turbine vane. Appl Therm Eng. 2017;111:537–49.

    Article  Google Scholar 

  32. Kelishami MK, Lakzian E. Optimization of the blowing ratio for film cooling on a flat plate. Int J Numer Methods Heat Fluid Flow. 2017;27(1):104–19.

    Article  Google Scholar 

  33. Lee S, Yee KJ, Rhee DH. Optimization of the array of film-cooling holes on a high-pressure turbine nozzle. AIAA J Propuls Power. 2017;33(1):234–47.

    Article  Google Scholar 

  34. Dávalos JO, García JC, Urquiza G, Huicochea A, Santiago OD. Prediction of film cooling effectiveness on a gas turbine blade leading edge using ANN and CFD. Int J Turbo Jet-Engine. 2018;35(2):101–11.

    Article  Google Scholar 

  35. Rao KVLN, Prasad BVSSS, Kanna Babu CH. Investigations of combustor inlet swirl on the liner wall temperature in an aero engine combustor. Int J Turbo Jet-Engines. 2019. https://doi.org/10.1515/tjj-2019-0035.

    Article  Google Scholar 

  36. Qiu D, Wang C, Luo L, Wang S, Zhao Z, Wang Z. On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08901-6.

    Article  Google Scholar 

  37. Kukutla PR, Prasad BVSSS. Network analysis of a coolant flow performance for the combined impingement and film cooled first stage of high pressure gas turbine nozzle guide vane. Proc Inst Mech Eng G J Aerosp Eng. 2019;233(6):1977–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pol Reddy Kukutla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukutla, P.R., Prasad, B.V.S.S.S., Tarigonda, H. et al. Optimization of film hole row locations of a nozzle guide vane using network approach. J Therm Anal Calorim 145, 2661–2674 (2021). https://doi.org/10.1007/s10973-020-09841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09841-2

Keywords

Navigation