Skip to main content
Log in

Hydro-thermal performance of normal-channel facile heat sink using TiO2-H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal management of microelectronics is a challenging task in modern high heat generating devices. In this work, thermal performance of normal-channel facile heat sink has been investigated using water and TiO2-H2O (mixture of Rutile and Anatase) nanofluids with volumetric concentration of 0.005% and 0.01%. The maximum reduction in base temperature was noted for TiO2-H2O (∅ = 0.01%) and TiO2-H2O (∅ = 0.005%) as 8.2% and 5.5%, respectively, when compared with water. The thermal performance of normal-channel facile heat sink was then compared with the mini-channel integral fin heat sink. The base temperature of normal-channel facile heat sink was found very close to mini-channel integral fin heat sink with a maximum difference of 1.8%. The total cost to fabricate mini-channel heat sink was almost 5.3 times greater than normal-channel heat sink. So, the normal-channel heat sink has economical advantage over the mini-channel heat sink in terms of lower fabrication cost with similar thermal performance. However, the pressure drop was found greater for normal-channel as compared to mini-channel heat sink. The experimental results of normal-channel facile heat sink were also validated numerically, and a good agreement was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Active area (mm2)

c :

Center of circle to wall distance (mm)

C :

Specific heat of fluid (kJ kgK−1)

D :

Diameter of circle (mm)

D h :

Hydraulic diameter (mm)

f :

Friction factor

h T :

Height from base to inlet/outlet nozzle (mm)

h :

Convective heat transfer coefficient (W m−2 °C)

H :

Height of fin (mm)

K :

Thermal conductivity of fluid (W mK−1)

L :

Length of facile heat sink (mm)

:

Mass flow rate (kg s−1)

Nu:

Nusselt number

ΔP :

Pressure drop (Pa)

:

Heat transfer rate (W)

R Th :

Thermal resistance (°C W−1)

T b :

Base temperature (°C)

T i :

Fluid inlet temperature (°C)

T o :

Fluid outlet temperature (°C)

ΔT b :

Base temperature drop (°C)

U in :

Inlet velocity (m s−1)

u,v,w :

Velocity in x, y and z axis

:

Volumetric flow rate (m3 s−1)

w np :

Mass percent of nanoparticles

W :

Width of facile heat sink (mm)

ρ :

Density of fluid (kg m−3)

µnf :

Dynamic viscosity of fluid (kg ms−1)

∅:

Volumetric concentration

CNC:

Computer numerical control

EDM:

Electro-discharge machining

LMTD:

Log of mean temperature difference (°C)

MCIFHS:

Mini-channel integral fin heat sink

NCFHS:

Normal-channel facile heat sink

PEC:

Performance evaluation criteria

act:

Active

h:

Hydraulic

nf:

Nanofluids

np:

Nanoparticles

bf:

Base fluid

b:

Base

i:

Inlet

o:

Outlet

References

  1. Kandlikar S. Fundamental issues related to flow boiling in minichannels and micro-channels. Exp Therm Fluid Sci. 2002;26:389–407.

    Article  CAS  Google Scholar 

  2. Xie XL, Tao WQ, He YL. Numerical study of turbulent heat transfer and pressure drop characteristics in water-cooled minichannel heat sink. J Electron Packag. 2007;129:247–55.

    Article  Google Scholar 

  3. Jajja SA, Ali W, Ali H, Ali AM. Water cooled minichannel heat sinks for microprocessor cooling: effect of pin spacing. Appl Therm Eng. 2014;64:76–82.

    Article  CAS  Google Scholar 

  4. Tariq H, Anwar M, Malik A. Numerical investigations of mini-channel heat sink for microprocessor cooling: effect of slab thickness. Arabian J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04370-4.

    Article  Google Scholar 

  5. Tariq H, Anwar M, Ali H, Ahmed J. Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09617-8).

    Article  Google Scholar 

  6. Saeed M, Kim M. Numerical study on thermal hydraulic performance of water cooled mini-channel heat sinks. Int J Refrig. 2016;69:147–64.

    Article  Google Scholar 

  7. Tariq HA, Israr A, Khan YI, Anwar M. Numerical and experimental study of cellular structures as a heat dissipation media. Heat Mass Transf. 2019;55(2):501–11.

    Article  Google Scholar 

  8. Tariq H, Shoukat A, Hassan M, Anwar M. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. J Therm Anal Calorim. 2019;136(5):2171–82.

    Article  CAS  Google Scholar 

  9. Tariq HA, Shoukat AA, Anwar M, Israr A, Ali HM (2018) Water cooled micro-hole cellular structure as a heat dissipation media: an experimental and numerical study. Therm Sci. http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361800184T.

  10. Anwar M, Tariq H, Shoukat A, Ali H. Numerical study for heat transfer enhancement using CuO-H2O nano-fluids through minichannel heat sinks for microprocessor cooling. J Therm Sci. 2019. https://doi.org/10.2298/TSCI180722022A).

    Article  Google Scholar 

  11. Ali M, Shoukat A, Tariq H, Anwar M, Ali H. Header design optimization of mini-channel heat sinks using CuO–H2O and Al2O3–H2O nanofluids for thermal management. Arabian J Sci Eng. 2019. https://doi.org/10.1007/s13369-019-04022-2.

    Article  Google Scholar 

  12. Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56.

    Article  CAS  Google Scholar 

  13. Roshani M, Miry SZ, Hanafizadeh P, Ashjaee M. Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3–water and TiO2–water nanofluids. J Therm Sci Eng Appl. 2015;7:596.

    Article  CAS  Google Scholar 

  14. Ali H, Arshad W. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manag. 2015;106:793–803.

    Article  CAS  Google Scholar 

  15. Ghasemi S, Ranjbar A, Hosseini M. Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid. Mech Res Commun. 2017;84:85–9.

    Article  Google Scholar 

  16. Miry S, Roshani M, Hanafizadeh P, Ashjaee M, Amini F. Heat transfer and hydrodynamic performance analysis of a miniature tangential heat sink using Al2O3–H2O and TiO2–H2O nanofluids. Exp Heat Transf. 2016;29(4):536–60.

    Article  CAS  Google Scholar 

  17. Manay E, Sahin B. Heat transfer and pressure drop of nanofluids in a microchannel heat sink. Heat Transf Eng. 2016;38(5):510–22.

    Article  CAS  Google Scholar 

  18. Khoshvaght-Aliabadi M, Hassani S, Mazloumi S. Comparison of hydrothermal performance between plate fins and plate-pin fins subject to nanofluid-cooled corrugated miniature heat sinks. Microelectron Reliab. 2017;70:84–96.

    Article  CAS  Google Scholar 

  19. Khoshvaght-Aliabadi M, Hassani S, Mazloumi S. Performance enhancement of straight and wavy miniature heat sinks using pin-fin interruptions and nanofluids. Chem Eng Process. 2017;122:90–108.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen T, et al. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  21. Izadi A, Siavashi M, Rasam H, Xiong Q. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Appl Therm Eng. 2020;168:114843.

    Article  CAS  Google Scholar 

  22. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrogen Energy. 2019;44(30):15933–48.

    Article  CAS  Google Scholar 

  23. Siavashi M, Karimi K, Xiong Q, Doranehgard M. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;87:267–87.

    Article  CAS  Google Scholar 

  24. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135:1399–415.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    Article  CAS  Google Scholar 

  26. Xiong Q, Bozorg M, Doranehgard M, Hong K, Lorenzini G. A CFD investigation of the effect of non-Newtonian behavior of Cu–water nanofluids on their heat transfer and flow friction characteristics. J Therm Anal Calorim. 2020;139:2601–21.

    Article  CAS  Google Scholar 

  27. Bozorg M, Doranehgard M, Hong K, Xiong Q. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oileAl2O3 nanofluid. Renew Energy. 2020;145:2598–614.

    Article  CAS  Google Scholar 

  28. Xiong Q, Khosravi A, Nabipour N, Doranehgard M, Sabaghmoghadam A, Ross D. Nanofluid flow and heat transfer due to natural convection in a semi-circle/ellipse annulus using modified lattice Boltzmann method. Int J Numer Methods Heat Fluid. 2019;29(12):4746–63.

    Article  Google Scholar 

  29. Norouzi A, Siavashi M, Oskouei M. Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles. Renew Energy. 2020;145:569–84.

    Article  CAS  Google Scholar 

  30. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    Article  CAS  Google Scholar 

  31. Selimefendigil F, Öztop H. Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146–147:9–24.

    Article  Google Scholar 

  32. Selimefendigil F, Öztop H. Effects of nanoparticle shape on slot-jet impingement cooling of a corrugated surface with nanofluids. J Therm Sci Eng Appl. 2017;9(2):564.

    Article  CAS  Google Scholar 

  33. Chamkha A, Selimefendigil F, Ismael M. Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer Heat Transf Part A Appl. 2016;69(6):659–75.

    Article  Google Scholar 

  34. Selimefendigil F, Öztop H. Forced convection in a branching channel with partly elastic walls and inner L-shaped conductive obstacle under the influence of magnetic field. Int J Heat Mass Transf. 2019;144:118598.

    Article  Google Scholar 

  35. Selimefendigil F, Öztop H, Özgul R. Turbulent forced convection of nanofluid in an elliptic cross-sectional pipe. Int Commun Heat Mass Transf. 2019;109:104384.

    Article  CAS  Google Scholar 

  36. Leena M, Srinivasan S. S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. J Mol Liq. 2015;206:103–9.

    Article  CAS  Google Scholar 

  37. Tajik B, Abbassi A, Saffar-Avval M, Najafabadi M. Ultrasonic properties of suspensions of TiO2 and Al2O3 nanoparticles in water. Powder Technol. 2012;217:171–6.

    Article  CAS  Google Scholar 

  38. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52:2059–67.

    Article  CAS  Google Scholar 

  39. Kavitha T, Rajendran A, Durairajan A. Synthesis, characterization of TiO2 nano powder and water based nanofluids using two step method. Eur J Appl Eng Sci Res. 2012;1:235–40.

    CAS  Google Scholar 

  40. Leong K, Najwa Z, Ahmad K, Ong H. Investigation on stability and optical properties of titanium dioxide and aluminum oxidewater-based nanofluids. Int J Thermophys. 2017;38:77.

    Article  CAS  Google Scholar 

  41. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.

    Article  CAS  Google Scholar 

  42. Minea A, Buonomo B, Burggraf J, Ercole D, Karpaiya K, Pasqua A, et al. NanoRound: a benchmark study on the numerical approach in nanofluids’ simulation. Int Commun Heat Mass Transf. 2019;108:104292.

    Article  CAS  Google Scholar 

  43. Kumar V, Sarkar J. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3-TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technol. 2019;345:717–27.

    Article  CAS  Google Scholar 

  44. Schiller L, Naumann A. A drag coefficient correlation. Z Ver Deutsch Ing. 1935;77:318.

    Google Scholar 

  45. Rea U, McKrell T, Hu L, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Mass Transf. 2009;52:2042–8.

    Article  CAS  Google Scholar 

  46. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  47. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  48. Bobbo S, Fedele L, Benetti A, Colla L, Fabrizio M, Pagura C, et al. Viscosity of water based SWCNH and TiO2 nanofluids. Exp Therm Fluid Sci. 2012;36:65–71.

    Article  CAS  Google Scholar 

  49. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  50. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluids Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  51. Motevasel M, Soleimanynazar A, Jamialahmadi M. Comparing mathematical models to calculate the thermal conductivity of nanofluids. Am J Oil Chem Technol. 2014;2(11):359–69.

    Google Scholar 

  52. Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci. 2005;44:367–73.

    Article  CAS  Google Scholar 

  53. Setia H, Gupta R, Wanchoo R. Stability of nanofuids. Mater Sci Forum. 2013;757:139–49.

    Article  CAS  Google Scholar 

  54. Wang X, Li H, Li X, Wang Z, Fang L. Stability of TiO2 and Al2O3 Nanofluids. Chin Phys Lett. 2011;28:8.

    Google Scholar 

  55. Ismay M, Doroodchi E, Moghtaderi B. Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids. Chem Eng Res Des. 2013;91(3):426–36.

    Article  CAS  Google Scholar 

  56. Wamkam C, Opoku M, Hong H, Smith P. Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J Appl Phys. 2011;109:24305.

    Article  CAS  Google Scholar 

  57. Penkavova V, Tihon J, Wein O. Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Res Lett. 2011;6:273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow. 2005;26:855–64.

    Article  CAS  Google Scholar 

  59. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Uncertainties

$$\frac{{\Delta \dot{Q}}}{{\dot{Q}}} = \left( {\left( {\frac{{\Delta \dot{V}}}{{\dot{V}}}} \right)^{2} + \left( {\frac{\Delta \rho }{\rho }} \right)^{2} + \left( {\frac{\Delta C}{C}} \right)^{2} + \left( {\frac{{\Delta \left( {T_{\text o} - T_{\text i} } \right)}}{{\left( {T_{\text o} - T_{\text i} } \right)}}} \right)^{2} } \right)^{1/2} = 4.2\%$$
$$\frac{{\Delta {\text{LMTD}}}}{\text{LMTD}} = \left( {\left( {\frac{{\Delta \left( {T_{\text{b}} - T_{\text{i}} } \right)}}{{\left( {T_{\text{b}} - T_{\text{i}} } \right)}}} \right)^{2} + \left( {\frac{{\Delta \left( {T_{b} - T_{o} } \right)}}{{\left( {T_{b} - T_{0} } \right)}}} \right)^{2} } \right)^{1/2} = 3.8\%$$
$$\frac{{\Delta D_{\text{h}} }}{{D_{\text{h}} }} = \left( {\left( {\frac{\Delta D}{D}} \right)^{2} } \right)^{1/2} = 0.8\%$$
$$\frac{{\Delta A_{\text{act}} }}{{A_{\text{act}} }} = \left( {\left( {\frac{\Delta DL}{DL}} \right)^{2} + \left( {\frac{\Delta HW}{HW}} \right)^{2} } \right)^{1/2} = 1.1\%$$
$$\frac{\Delta h}{h} = \left( {\left( {\frac{{\Delta \dot{Q}}}{{\dot{Q}}}} \right)^{2} + \left( {\frac{{\Delta \left( {\text{LMTD}} \right)}}{{\left( {\text{LMTD}} \right)}}} \right)^{2} + \left( {\frac{{\Delta A_{\text{act}} }}{{A_{\text{act}} }}} \right)^{2} } \right)^{1/2} = 5.9\%$$
$$\frac{{\Delta R_{\text{Th}} }}{{R_{\text{Th}} }} = \left( {\left( {\frac{{\Delta {\text{LMTD}}}}{\text{LMTD}}} \right)^{2} + \left( {\frac{{\Delta \dot{Q}}}{{\dot{Q}}}} \right)^{2} } \right)^{1/2} = 5.4\%$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, H.A., Anwar, M., Malik, A. et al. Hydro-thermal performance of normal-channel facile heat sink using TiO2-H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling. J Therm Anal Calorim 145, 2487–2502 (2021). https://doi.org/10.1007/s10973-020-09838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09838-x

Keywords

Navigation