Skip to main content
Log in

Double-diffusivity heat generation effects on bioconvection process embedded in a vertical porous surface with variable fluid properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present paper concerns the bioconvective flow, mass and heat transfer including motile microorganisms on a vertical surface saturated with porous materials of variable porosity. Because of variable porosity, other fluid properties are assumed to be porosity-dependent. The physical laws that govern the fluid flow and microorganism concentration are modeled into a set of coupled partial differential equations and simplified into corresponding nonlinear ordinary differential equations with similarity variables. Numerical solutions are obtained using in-built functions in Maple 14.0 to ease the hardship connected with computational complexity in the nonlinear problem. Graphical solutions of the symbolic results are presented and fully explained in accordance with the physics of the fluid for the velocity, temperature, concentration and motile microorganism density profiles for uniform and variable permeability and also in porous, non-porous cases. Mixed convective parameter λ has pronounced effect on heat mass and motile microorganism transfer rate in case variable permeability with porous surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Merki JH. The effects of buoyancy forces on the boundary layer flow over a semi infinite vertical flat plate in a uniform free stream. J Fluid Mech. 1969;35:439–50.

    Article  Google Scholar 

  2. Merkin JH. Free convection with blowing and suction. Int J Heat Mass Transf. 1972;15:989–99.

    Article  Google Scholar 

  3. Chen P, Minkowyez WJ. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dyke. J Geophys Res. 1977;82:2040–4.

    Article  Google Scholar 

  4. Chen P. Combined free and forced convection flow about inclined surfaces in porous media. Int J Heat Mass Transf. 1977;20:807–14.

    Article  Google Scholar 

  5. Kumar M, Gorla RSR. Mixed convection boundary layer flow along a vertical surface in porous medium. Heat Mass Transfer J. 1997;32:393–8.

    Article  Google Scholar 

  6. Ranganathann P, Viskanta R. Combined convection along a non-isothermal wedge in a porous medium. Heat Mass Transf. 1984;7:305–17.

    Google Scholar 

  7. Hseih JC, Chen TS, Armaly BF. Non-similarity solutions for mixed convection from vertical surfaces in porous medium with variable surface temperature or heat flux. Int J Heat Mass Transf. 1993;38(4):1485–93.

    Article  Google Scholar 

  8. Aldoss TK, Al-Nimur MA, Jarrah MA, Al-Shaer BJ. Magneto hydrodynamic Mixed Convection from a vertical plate embedded in a porous medium. Numer Heat Transf. 1995;28(5):635–45.

    Article  Google Scholar 

  9. Sheikholeslami M, Saleem S, Ahmad S, Zhixiong L, Hayat T, Alsaedi A, Ijaz Khan M. Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Comput Methods Appl Mech Eng. 2019;349:839–58.

    Article  Google Scholar 

  10. Mathur P, Jha A. Hydrodynamic free convection from a moving permeable vertical surface through porous medium with heat source and first order chemical reaction. Int J Math Trends Technol (IJMTT). 2017;48(2):120–7.

    Article  Google Scholar 

  11. Modather M, Abdou M. Effects of MHD and joule heating on free convective boundary layer with variable plate temperature in porous medium. Appl Math Sci. 2017;11(36):1765–77.

    Google Scholar 

  12. Pranitha J, Suman GV, Srinivasachary D. Mixed convection in a power -law fluid saturated non-darcy porous medium with influence of variable properties, MHD and thermophoresis. Int J Pure Appl Math. 2017;113(12):160–8.

    Google Scholar 

  13. Amanulla H, Saleem S, Abderrahim W, Al Qarni MM. MHD Prandtl fluid flow past an isothermal sphere with slip effects: non-Darcy porous medium. Case Stud Therm Eng. 2019;14:100447.

    Article  Google Scholar 

  14. Gibanov NS, Sheremet MA, Ismael MA, Chamka AJ. Mixed convection in a ventilated cavity filled with a triangular porous layer. Transp Porous Media. 2017. https://doi.org/10.1007/s11242-017-0888-y.

    Article  Google Scholar 

  15. Golafshan B, Rahimi AB. Effects of radiation on mixed convection stagnation point flow of MHD third-grade nanofluid over a vertical stretching sheet. J Therm Anal Calorim. 2019;135(1):533–49.

    Article  CAS  Google Scholar 

  16. Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2019;135(1):813–59.

    Article  CAS  Google Scholar 

  17. Schwartz CE, Smith JM. Flow distribution in packed beds. Ind Eng Chem Res. 1953;45:1209–18.

    Article  CAS  Google Scholar 

  18. Tierney JW, Roblee LHS, Barid RM. Radial porosity variation in packed beds. AIChE J. 1958;4:460–4.

    Article  Google Scholar 

  19. Benenati RF, Brosilow CB. Void fraction distribution in beds of spheres. AIChE J. 1962;8:359–61.

    Article  CAS  Google Scholar 

  20. Choi IG. The effect of variable properties of air on the boundary layer for a moving continuous cylinder. Int J Heat Mass Transf. 1982;25:597–602.

    Article  Google Scholar 

  21. Lai FC, Kulacki FA. The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. Int J Heat Mass Transf. 1990;33:1028–31.

    Article  Google Scholar 

  22. Pop I, Gorla RSR, Rashid M. The effect of variable viscosity on flow and heart transfer to a continuous moving flat plate. Int J Eng Sci. 1992;30:1–6.

    Article  CAS  Google Scholar 

  23. Chandrasekhara BC, Vortmeye D. Flow model for velocity distribution in fixed porous beds under isothermal conditions. Warme Stoffuberiragung. 1979;12:105–11.

    Article  Google Scholar 

  24. Chandrasekhar BC, Namboudiri PMS, Hanumanthappa A. Similarity solutions for buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces. Warme and Stoffuberiragung. 1984;18:17–23.

    Article  Google Scholar 

  25. Chandrasekhara B. Mixed convection in the presence of horizontal impermeable surfaces in saturated porous media with variable permeability. Warme Stoffuberiragung. 1985;19:195–201.

    Article  CAS  Google Scholar 

  26. Ibrahim FS, Hassanie IA. Influence of variable permeability on combined convection along a non-isothermal wedge in saturated porous medium. Transp Porous Media. 2000;39:57–71.

    Article  CAS  Google Scholar 

  27. Pantokratoras A. Forced and Mixed convection boundary layer flow along a flat plate with variable viscosity and variable prandtl number. New results. Heat Mass Transf. 2005;41:1085–94.

    Article  Google Scholar 

  28. Pantokratoras A. Non-darcian forced convection heat transfer over a flat plate in a porous medium with variable viscosity and variable Prandtl number. J Porous Media. 2007;10:201–8.

    Article  Google Scholar 

  29. Srinivasacharya D, Mallikarjuna B, Bhuvanavijaya R. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium. Alex Eng J. 2016;55(2):1243–53.

    Article  Google Scholar 

  30. Ahmed Z, Al-Qahtani A, Nadeem S, Saleem S. Computational study of MHD nanofluid flow possessing micro-rotational inertia over a curved surface with variable thermophysical properties. Processes. 2019;7:387.

    Article  CAS  Google Scholar 

  31. Singh PK. Effects of variable fluid properties and viscous dissipation on mixed convection fluid flow past a vertical plate in porous medium. Int J Sci Eng Res. 2012;3(7).

  32. Nalinakshi N, Dinesh PA, Chandrashekhar DV. Effects of variable fluid properties and MHD on mixed convection heat transfer from a vertical heated plate embedded in a sparsely packed porous medium. IOSR J Math. 2013;7(1):20–31.

    Article  Google Scholar 

  33. Dinesh PA, Nalinakshi N, Sandeep N. Double diffusive mixed convection in a couple stress fluids with variable fluid properties. Adv Phys Theor Appl. 2015;41:30–42.

    Google Scholar 

  34. Rajput JS, Upadhyay V. Hydromagnetic mixed convection flow through horizontal channel, analysis with viscous dissipation, joule heating, variable viscosity and thermal conductivity. Int J Math Trends Technol. 2018;55(7):463–81.

    Article  Google Scholar 

  35. Qasim M, Afridi MI, Wakif A, Saleem S. Influence of variable transport properties on non-linear radioactive jeffrey fluid flow over a disk: utilization of generalized differential quadrature method. Arab J Sci Eng. 2019;44(6):5987–96.

    Article  CAS  Google Scholar 

  36. Magyari E, Pop I, Postelnicu A. Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium-part I. Transp Porous Media. 2007;67:49–67.

    Article  Google Scholar 

  37. Magyari E, Pop I, Postelnicu A. Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium-part II. Transp Porous Media. 2007;67:189–201.

    Article  Google Scholar 

  38. Merkin JH. Free convection boundary layer flow in a heat generating porous medium: similarity solutions. Q J Mech Appl Math. 2008;61:205–18.

    Article  Google Scholar 

  39. Mealley LR, Merkin JH. Free convection boundary layers on a vertical surface in a heat generating porous medium. IMA J Appl Math. 2007;73:231–53.

    Article  Google Scholar 

  40. Abd-El-Aziz M, Saleem S. Numerical simulation of entropy generation for power law liquid flow over a permeable exponential stretched surface with variable heat source and heat flux. Entropy. 2019;21(5):484.

    Article  PubMed Central  CAS  Google Scholar 

  41. Durga Prashad P, Saleem S, Varma SVK, Raju CSK. 3D slip flow of chemically reacting Casson fluid over a porous slender sheet with non-uniform heat source or sink. J Korean Phys Soc. 2019;74(9):855–64.

    Article  CAS  Google Scholar 

  42. Tashtoush B, Duwair HM. Transient mixed convection with internal heat generation and oscillating plate temperature. Acta Mech. 2005;174:185–99.

    Article  Google Scholar 

  43. Saleem S, Abd El-Aziz M. Entropy generation and convective heat transfer of radiated non-Newtonian power-law fluid past an exponentially moving surface under slip effects. Eur Phys J Plus. 2019;134:184.

    Article  CAS  Google Scholar 

  44. Crepea JC, Clarksean R. Similarity solutions of natural convection with heat generation. J Heat Transf. 1997;119:183–5.

    Article  Google Scholar 

  45. Ferdows M, Liu D. Similarity solutions on mixed convection heat transfer from a horizontal surface saturated in a porous medium with internal heat generation. Int J Appl Mech Eng. 2017;22(1):253–8.

    Article  Google Scholar 

  46. Olanrewaju PO, Arulongun OT, Adebimpe K. Internal heat generation effect on thermal boundary layer with a convective surface boundary condition. Am J Fluid Dyn. 2012;2(1):1–4.

    Article  Google Scholar 

  47. Makinde OD, Aziz A. Mixed convection from a convectively heated vertical plate to a fluid with internal heat generation. J Heat Transf. 2011;133(12):122501.

    Article  Google Scholar 

  48. Selimefendigil F, Öztopb HF. Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation. J Taiwan Inst Chem Eng. 2017;70:168–78.

    Article  CAS  Google Scholar 

  49. Ahmed SE, Mansour MA, Hussein AK, Mallikarjana B, Almeshaal MA, Kolsi L. MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu-water nanofluid in the presence of the heat generation and partial slip. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08340-3.

    Article  Google Scholar 

  50. Sobamowo MG, Akinshilo AT. Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with temperature dependent viscosities and internal heat generation. J Mol Liq. 2017;241:188–98.

    Article  CAS  Google Scholar 

  51. Vajravelu K. Effect of variable properties and internal heat generation on natural convection at a heated vertical plate in air. Numer Heat Transf. 2007;3(3):345–56.

    Google Scholar 

  52. Suresh Babu R, Dinesh PA, Rushi Kumar B. Combined effects of internal heat generation and viscous dissipation for double diffusive with forcheimer fluid model. In: Proceedings of the 6th international conference on porous media and its applications in science and engineering, 2016.

  53. Girinath Reddy M, Dinesh PA. Double diffusive convection and Internal Heat Generation with Soret and Dufour effects over an accelerating surface with variable viscosity and permeability. Adv Phys Theor Appl. 2018;69:1–6.

    Google Scholar 

  54. Saleem S, Nadeem S, Rashidi MM, Raju CSK. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol. 2019;25:683–9.

    Article  Google Scholar 

  55. Saleem S, Rafiq H, Al-Qahtari A, El-Aziz MA, Malik MY, Animasaun IL. Magneto Jeffrey nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism. Math Prob Eng 2019; Article ID 3478037, 11 pages.

  56. Pedley TJ, Hill NA, Kessler JO. The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J Fluid Mech. 1988;195:223–37.

    Article  CAS  PubMed  Google Scholar 

  57. Kuznetsov AV. Thermo-bioconvection in a suspension of oxytactic bacteria. Int Commun Heat Mass Transfer. 2005;32:991–9.

    Article  CAS  Google Scholar 

  58. Geng P, Kuznetsov AV. Effect of small solid particles on the development of bioconvection plums. Int Commun Heat Mass Transf. 2004;31:629–38.

    Article  Google Scholar 

  59. Avramenko AA, Kuznetsov AV. Bio-thermal convection caused by combined effects of swimming of oxytactic bacteria and inclined temperature gradient in a shallow fluid layer. Int J Numer Methods Heat Fluid Flo. 2010;20:157–73.

    Article  Google Scholar 

  60. Siddiqa S, Gul-e-Hina, Begum N, Saleem S, Hossain MA, Reddy Gorla RS. Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. Int J Heat Mass Transf. 2016;101:608–13.

    Article  CAS  Google Scholar 

  61. Uddin MJ, Khan WA, Ismail AIM. Free convective flow of non-Newtonian nanofluids in porous media with gyrotactic microorganism. J Thermophys Heat Transf. 2013;27:326–33.

    Article  CAS  Google Scholar 

  62. Uddin MJ, Khan WA, Ismail A, Ismail IM. Effect of dissipation on free convective flow of a non-Newtonian nanofluid in a porous medium with gyrotactic microorganisms. J Nanoeng Nanosys. 2013;227:11–8.

    Google Scholar 

  63. Khan WA, Makinde OD. MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. Int J Therm Sci. 2014;81:118–24.

    Article  Google Scholar 

  64. Raees A, Xu H, Sun Q. Mixed convection in gravity -driven nanoliquid film containing both nanoparticles and gyrotactic microorganism. Appl Math Mech. 2015;36:163–78.

    Article  Google Scholar 

  65. Khan NS, Islam S. Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms. Results Phys. 2017;7:4033–49.

    Article  Google Scholar 

  66. Mahdy A. Gyrotactic microorganisms mixed convection nanofluid flow along an isothermal vertical wedge in porous media. Int J Mech Aerosp Ind Mech Manuf Eng. 2017;11:840–50.

    Google Scholar 

  67. Sampath Kumar PB, Gireesha BJ, Mahanthesh B, Chamkha AJ. Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition. J Therm Anal Calorim. 2019;136(5):1947–57.

    Article  CAS  Google Scholar 

  68. Hsieh JC, Chen TS, Armaly BF. Mixed convection along a non-isothermal vertical plate embedded in a porous medium: the entire regime. Int J Heat Mass Transf. 1993;36:1819–25.

    Article  CAS  Google Scholar 

  69. Cheng C-Y. Soret and dufour effects on mixed convection heat and mass transfer from a vertical wedge in a porous medium with constant wall temperature and concentration. Transp Porous Media. 2012;94:123–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferdows.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nima, N.I., Ferdows, M., Adesanya, S.O. et al. Double-diffusivity heat generation effects on bioconvection process embedded in a vertical porous surface with variable fluid properties. J Therm Anal Calorim 145, 2571–2580 (2021). https://doi.org/10.1007/s10973-020-09822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09822-5

Keywords

Navigation