Skip to main content
Log in

The relation between chemical structure of dicarboxylic dihydrazide compounds and nucleation effect in isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of dicarboxylic dihydrazide compounds (DCDH-R-n) were prepared and used as nucleating agents for isotactic polypropylene (iPP). To investigate the relation between chemical structure of nucleating agents and nucleation effect in iPP, the influences of DCDH-R-n on crystallization and melting behaviors of iPP were analyzed by differential scanning calorimeter. The results showed some of dicarboxylic dihydrazide compounds were highly efficient for iPP. The nucleation efficiency of these nucleating agents depended on different substituent groups (R) and the number of methylene groups (n). When R is phenyl or cyclohexyl, the corresponding nucleating agents had relatively excellent nucleation effect. A nucleating agent was likely to have better nucleation effect as the number of methylene groups in the structure increases. In addition, the optimum addition amount of DCDH-R-n in iPP ranged from 0.10 to 0.20 mass% and the crystallization temperatures of nucleated iPP under optimum addition amount reached above 130.0 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang YF, Zhou PZ, Li Y. The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene. Polym Adv Technol. 2019;30(7):1777–88.

    Article  CAS  Google Scholar 

  2. He B, Lin XF, Zhang YF. Effect of a novel compound nucleating agent calcium sulfate whisker/β nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132(2):1145–52.

    Article  CAS  Google Scholar 

  3. Varga J. Supermolecular structure of isotactic polypropylene. J Mater Sci. 1992;27(10):2557–79.

    Article  CAS  Google Scholar 

  4. Zhao SC, Yu X, Gong HZ, Xin Z, Shi YQ, Zhou S. The crystallization behavior of isotactic polypropylene induced by a novel antinucleating agent and its inhibition mechanism of nucleatione. Ind Eng Chem Res. 2015;54(13):7650–7.

    Article  CAS  Google Scholar 

  5. Nie M, Han R, Wang Q. Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind Eng Chem Res. 2014;53(10):4142–6.

    Article  CAS  Google Scholar 

  6. Zhou PZ, Zhang YF, Lin XF. Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2019;136:749–57.

    Article  CAS  Google Scholar 

  7. Lu QC, Dou Q. Investigation of the microstructures, properties, and toughening mechanism of polypropylene/calcium carbonate toughening masterbatch composites. J Appl Polym Sci. 2017;134(46):45515–32.

    Article  CAS  Google Scholar 

  8. Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128:925–35.

    Article  CAS  Google Scholar 

  9. Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37(22):4979–92.

    Article  CAS  Google Scholar 

  10. Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47(21):7612–24.

    Article  CAS  Google Scholar 

  11. Quan Y, Li H, Yan S. Comparison study on the heterogeneous nucleation of isotactic polypropylene by its own fiber and α nucleating agents. Ind Eng Chem Res. 2013;52(13):4772–8.

    Article  CAS  Google Scholar 

  12. Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep. 2006;53(3):73–197.

    Article  CAS  Google Scholar 

  13. Zhang YF, He B, Hou HH, Guo LH. Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J Macromol Sci Part B Phys. 2017;56(11–12):811–20.

    Article  CAS  Google Scholar 

  14. Varga J, Stoll K, Menyhard A, Horvath Z. Crystallization of isotactic polypropylene in the presence of a beta-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121(3):1469–80.

    Article  CAS  Google Scholar 

  15. Looijmans S, Menyhard A, Peters GWM, Alfonso GC, Cavallo D. Anomalous temperature dependence of isotactic polypropylene alpha-on-beta cross-nucleation kinetics. Cryst Growth Des. 2017;17(9):4935–43.

    Article  CAS  Google Scholar 

  16. Zhou PZ, Zhang YF, Lin XF. Thermal stability of nucleation effect of different β nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132(3):1845–52.

    Article  CAS  Google Scholar 

  17. Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;131(2):1483–90.

    Article  CAS  Google Scholar 

  18. Cai Z, Zhao SC, Shen BX, Xin Z. The effect of bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylate on the mechanical properties and crystallization behaviors of isotactic polypropylene. J Appl Polym Sci. 2010;116(2):792–800.

    CAS  Google Scholar 

  19. Lv ZP, Yang YF, Wu R, Tong Y. Design and properties of a novel nucleating agent for isotactic polypropylene. Mater Des. 2012;37(5):73–8.

    Article  CAS  Google Scholar 

  20. Zhang YF, Li D, Chen QJ. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci. 2017;295(10):1973–82.

    Article  CAS  Google Scholar 

  21. Gui QD, Xin Z, Zhu WP, Dai GC. Effects of an organic phosphorus nucleating agent on crystallization behaviors and mechanical properties of polypropylene. J Appl Polym Sci. 2003;88(2):297–301.

    Article  CAS  Google Scholar 

  22. Housmans JW, Gahleitner M, Peters GWM, Meijer HEH. Structure-property relations in molded, nucleated isotactic polypropylene. Polymer. 2009;50(10):2304–19.

    Article  CAS  Google Scholar 

  23. Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T. Epitaxial act of sodium 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate on isotactic polypropylene. Polymer. 2001;42(23):9627–31.

    Article  CAS  Google Scholar 

  24. Rungswang W, Thongsak K, Prasansuklarb A. Effects of sodium salt and sorbitol-serivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res. 2014;53(6):2331–9.

    Article  CAS  Google Scholar 

  25. Zhang YF, Zhou PZ, Mao JJ, Liu N. Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors and properties of isotactic polypropylene. Polym Bull. 2019;76(4):1685–96.

    Article  CAS  Google Scholar 

  26. Marco C, Ellis G, Gomez MA, Arribas JM. Comparative study of the nucleation activity of third generation sorbitol-based nucleating agents for isotactic polypropylene. J Appl Polym Sci. 2002;84(13):2440–50.

    Article  CAS  Google Scholar 

  27. Marco C, Ellis G, Gomez MA, Arribas JM. Analysis of the isothermal crystallization of isotactic polypropylene nucleated with sorbitol derivatives. J Appl Polym Sci. 2003;88(9):2261–74.

    Article  CAS  Google Scholar 

  28. Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical properties. Macromolecules. 2003;36(14):5150–6.

    Article  CAS  Google Scholar 

  29. Zhang YF, Zhou PZ, Jiang YZ, Yang X. The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta. 2017;655:219–25.

    Article  CAS  Google Scholar 

  30. Blomenhofer M, Ganzleben S, Hanft D, Schmidt HW, Kristiansen M, Smith P, Stoll K, Malder D, Hoffmann K. “Designer” nucleating agents for polypropylene. Macromolecules. 2005;38(9):3688–95.

    Article  CAS  Google Scholar 

  31. Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295:619–26.

    Article  CAS  Google Scholar 

  32. Nampoothiri KM, Nair NR, John RP. An over view of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101(22):8493–501.

    Article  CAS  Google Scholar 

  33. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Polymorphic transition in disordered poly (L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules. 2008;41(12):4296–304.

    Article  CAS  Google Scholar 

  34. Rathi S, Kalish JP, Coughlin EB, Hsu SL. Utilization of oligo (lactic acid) for studies of chain conformation and chain packing in poly (lactic acid). Macromolecules. 2011;44(9):3410–5.

    Article  CAS  Google Scholar 

  35. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for poly (L-lactic acid): an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103(1):198–203.

    Article  CAS  Google Scholar 

  36. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Physical and mechanical properties of poly (L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci. 2007;103(1):244–50.

    Article  CAS  Google Scholar 

  37. Li CH, Luo SS, Wang JF, Wu H, Guo SY, Zhang X. Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromolecules. 2017;18(4):1440–8.

    Article  CAS  PubMed  Google Scholar 

  38. Cai Y, Yan S, Yin J, Fan Y, Chen X. Crystallization behavior of biodegradable poly (L-lactic acid) filled with a powerful nucleating agent: N, N′-bis (benzoyl) suberic acid dihydrazide. J Appl Polym Sci. 2011;121(3):1408–16.

    Article  CAS  Google Scholar 

  39. Hansen RH, Benedictis TD, Martin WM. Stabilization of polypropylene. Polym Eng Sci. 1965;5(5):223–6.

    Article  CAS  Google Scholar 

  40. Rybnikar F. Efficiency of nucleating additives in polypropylene. J Appl Polym Sci. 1969;13(5):827–33.

    Article  CAS  Google Scholar 

  41. Rybnikar F. Character of crystallization nuclei in isotactic polypropylene. J Appl Polym Sci. 1982;27(5):1479–86.

    Article  CAS  Google Scholar 

  42. Fillon B, Thierry A, Lotz B, Wittman JC. Efficiency scale for polymer nucleating agents. J Therm Anal. 1994;42(4):721–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Mao, JJ. & Zhou, PZ. The relation between chemical structure of dicarboxylic dihydrazide compounds and nucleation effect in isotactic polypropylene. J Therm Anal Calorim 145, 2379–2387 (2021). https://doi.org/10.1007/s10973-020-09810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09810-9

Keywords

Navigation