Skip to main content
Log in

Experiment and simulation of environmental chamber performance for fuel cell vehicle engine system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Comprehensive performance experiments were carried out, and the thermodynamic temperature simulation model was established based on the independently researched and developed environmental chamber (EC) that integrates temperature, relative humidity, and pressure for the environmental worthiness test of fuel cell vehicle (FCV) engines. The results show that the control ranges of temperature, relative humidity, and absolute pressure in the EC are − 40–70 °C, 10–95%, and 100–50 kPa; the deviations are ± 1 °C, ± 2%, and ± 1 kPa; and the uniformities are 0.5 °C, 2.46%, and 0.63 kPa, respectively. Higher requirements for equipment and controlling system are needed to achieve such range, accuracy, and uniformity in a space as large as 95 m3. The simulation model accurately and effectively reflects the temperature variation in the EC. Therefore, the proposed model will be used as guidance for the FCV engine temperature test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(C\) :

specific heat of the species (J mol-1 K-1)

\(M\) :

relative molecular mass (kg mol-1)

\(T\) :

temperature (K)

\(t\) :

time (s)

\(Q\) :

heat flux (J s-1)

\(H\) :

enthalpy (J)

\({\text{tcc}}\) :

thermal contact conductance (W m-2 K-1)

\(A\) :

conduct surface (m2)

\({\text{sf}}\) :

shape factor (m)

\({\text{ctr}}\) :

contact thermal resistance (K W-1)

\(l\) :

characteristic length (m)

\(L\) :

length (m)

\(W\) :

width (m)

\(Cp\) :

specific heat (J kg-1 K-1)

\(Pr\) :

Prandtl number

\(Gr\) :

Grashof number

\(Ra\) :

Rayleigh number

\(Re\) :

Reynolds number

\(Nu\) :

Nusselt number

\(h\) :

convective exchange coefficient (W m-2 K-1)

\(ReTrans1\) :

laminar-to-turbulent transition for forced convection: lower Reynolds number

\(ReTrans2\) :

laminar-to-turbulent transition for forced convection: upper Reynolds number

\(\varPhi\) :

heat flux(W)

\(\lambda\) :

thermal conductivity (W m-1 K-1)

\(\delta\) :

distance between the two temperature points (m)

\(\mu\) :

absolute viscosity (kg m-1 s-1)

\({\text{g}}\) :

gravity acceleration (m s-2)

\(\rho\) :

density (kg m-3)

\(\alpha\) :

volumetric expansion coefficient (1 K-1)

\(\nu\) :

velocity (m s-1)

\(k\) :

gain on heat exchange

\(\theta\) :

angle (°)

\(gen\) :

generated

dis:

dissipation

ele:

electricity

wal:

wall

doo:

door

win:

window

ben:

bench

gro:

ground

Por1:

port1

Por2:

port2

Fil:

film

Flu:

fluid

fre:

free

for:

forced

References

  1. Kwan TH, Wu XF, Yao QH. Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells. Appl Energ. 2018;217:314–27.

    Article  Google Scholar 

  2. Afshari E. Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field. J Therm Anal Calorim. 2020;139(4):2423–34.

    Article  CAS  Google Scholar 

  3. Robledo CB, Oldenbroek V, Abbruzzese F, van Wijk AJM. Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building. Appl Energy. 2018;215:615–29.

    Article  Google Scholar 

  4. Nagula M. Forecasting of fuel cell technology in hybrid and electric vehicles using Gompertz growth curve. J Stat Manag Syst. 2016;19(1):73–88.

    Google Scholar 

  5. Hames Y, Kaya K, Baltacioglu E, Turksoy A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrog Energy. 2018;43(23):10810–21.

    Article  CAS  Google Scholar 

  6. Das HS, Tan CW, Yatim AHM, Li SH. Fuel cell and ultracapacitor energy system control using linear quadratic regulator proportional integral controller. Electr Eng. 2019;101(2):559–73.

    Article  Google Scholar 

  7. Jamalabadi MYA. Carbon monoxide reduction in solid oxide fuel cell-mini gas turbine hybrid power system. J Therm Anal Calorim. 2019;135(3):1871–80.

    Article  CAS  Google Scholar 

  8. Ahmed NA, Madouh JY. High-frequency full-bridge isolated DC–DC converter for fuel cell power generation systems. Electr Eng. 2018;100(1):239–51.

    Article  Google Scholar 

  9. Genç G, Sarikoç S. Energy and exergy analysis of a solid-oxide fuel cell power generation system for an aerial vehicle (ISSA- 2015-139). Int J Green Energy. 2018;15(3):151–60.

    Article  Google Scholar 

  10. Krummrich S, Llabrés J. Methanol reformer—the next milestone for fuel cell powered submarines. Int J Hydrog Energy. 2015;40(15):5482–6.

    Article  CAS  Google Scholar 

  11. Xie JM, Hao WQ, Wang FH. The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power. Int J Energy Res. 2018;42(5):2010–20.

    Article  Google Scholar 

  12. Zhang GS, Kandlikar SG. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrog Energy. 2012;37(3):2412–29.

    Article  CAS  Google Scholar 

  13. Li DZ, Li C, Gao ZQ, Jin QB. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells. J Power Sources. 2015;283:452–63.

    Article  CAS  Google Scholar 

  14. Oono Y, Fukuda T, Sounai A, Hori M. Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J Power Sources. 2010;195(4):1007–14.

    Article  CAS  Google Scholar 

  15. Wang MH, Guo H, Ma CF. Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed. J Power Sources. 2006;157(1):181–7.

    Article  CAS  Google Scholar 

  16. Zhao XQ, Li YK, Liu ZX, Li Q, Chen WR. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell. Int J Hydrog Energy. 2015;40(7):3048–56.

    Article  CAS  Google Scholar 

  17. Tiss F, Chouikh R, Guizani A. Dynamic modeling of a PEM fuel cell with temperature effects. Int J Hydrog Energy. 2013;38(20):8532–41.

    Article  CAS  Google Scholar 

  18. Hosseinzadeh E, Rokni M, Rabbani A, Mortensen HH. Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Appl Energy. 2013;104:434–44.

    Article  CAS  Google Scholar 

  19. Karthik M, Vijayachitra S. An integrated exploration of thermal and water management dynamics on the performance of a stand-alone 5-kW Ballard fuel-cell system for its scale-up design. Proc Inst Mech Eng J Power. 2014;228(7):836–52.

    Article  CAS  Google Scholar 

  20. Wu Y, Chen S. Study on water management of proton exchange membrane fuel cell. Beijing: Science Press; 2011.

    Google Scholar 

  21. Blanco M, Wilkinson DP. Investigation of the effect of microporous layers on water management in a proton exchange membrane fuel cell using novel diagnostic methods. Int J Hydrog Energy. 2014;39(29):16390–404.

    Article  CAS  Google Scholar 

  22. Boulon L, Agbossou K, Hissel D, Hernandez A, Bouscayrol A, Sicard P et al. (2010) Energy management of a fuel cell system: influence of the air supply control on the water issues. In: IEEE international symposium on industrial electronics (ISIE 2010). 2010:161–6

  23. Chippar P, Kang K, Lim YD, Kim WG, Ju H. Effects of inlet relative humidity (RH) on the performance of a high temperature-proton exchange membrane fuel cell (HT-PEMFC). Int J Hydrog Energy. 2014;39(6):2767–75.

    Article  CAS  Google Scholar 

  24. Ko D, Doh S, Park HS, Kim MH. Investigation of the effect of operating pressure on the performance of proton exchange membrane fuel cell: in the aspect of water distribution. Renew Energy. 2018;115:896–907.

    Article  CAS  Google Scholar 

  25. Naso V, Lucentini M, Aresti M (2013) Evaluation of the overall efficiency of a low pressure proton exchange membrane fuel cell power unit. In: Proceedings of the IEEE energy conversion congress and exposition, Denver, 2013

  26. Youcef K, Yasmina KZ, Ahmed B. Effect of pressure in proton exchange membrane fuel cell (PEMFC). Int J Energy Eng. 2013;3(3):158–64.

    Google Scholar 

  27. Yu XC, Zhou B, Sobiesiak A. Water and thermal management for Ballard PEM fuel cell stack. J Power Sources. 2005;147(1–2):184–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study benefits from the financial support of the Program of Development of Major Scientific Instruments and Equipment of the State (Grant No. 2012YQ150256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, G., Li, Y., Cui, X. et al. Experiment and simulation of environmental chamber performance for fuel cell vehicle engine system. J Therm Anal Calorim 145, 2477–2485 (2021). https://doi.org/10.1007/s10973-020-09805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09805-6

Keywords

Navigation