Skip to main content
Log in

High-temperature hydrogen production by solar thermochemical reactors, metal interfaces, and nanofluid cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar thermochemical reactors have been considered in recent studies because of converting the solar energy to a fuel, which is called solar fuel. In such reactors, heat transfer is a dominant phenomenon in generating products. Providing the optimum thermal energy for the solar thermochemical cycle can be gained by adjusting the size of the solar concentrator. In this study, the sizing of the solar concentrator is studied and the best size of the cavity is calculated by the Monte Carlo method. In this reactor using solar energy, the intermediate metal is converted to solar fuel. ZnO/Zn is considered to be the intermediate metal for the reaction. Next, the solar reactor is modeled in three dimensions and all types of heat transfer mechanisms, i.e., conduction, convection, and radiation along with chemical reaction conditions, are also considered. Sensitivity analysis is done based on the solar concentrator size and the aperture cavity. The results show that the optimum size of the dish collector is 5.168 m and the aperture cavity diameter was gained 5 cm for 10 kWth solar reactor. Nanofluid is used as cooling fluid, with the best modeled fluid flow rate for this structure, the ratio of annual fluid flow to nanofluid being 1. By examining the hydrogen production reactor, the amount of hydrogen produced in the system is 34 mol m−3. Also, the irradiation distribution of the cavity receiver and the temperature distribution of the solar reactor were modeled and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(H\) :

Enthalpy (J kg−1)

\(f\) :

Focal length (m)

rim:

Rim angle of the collector (rad)

\(I_{0}\) :

Solar flux incident (W m−2)

\(A\) :

Area (m2)

\(C_{\text{p}}\) :

Specific heat (J kg−1 K−1)

\(u\) :

Fluid velocity (m s−1)

\(Q\) :

Heat flux (kWth m−3)

\(q_{\text{chem}}^{\prime \prime }\) :

Rate of endothermal reaction (Wth m−3)

\(\Delta H_{\text{r}}\) :

Enthalpy of reaction (J kg−1)

E a :

Activation energy (kJ mol−1)

c j :

Mass of component j (mol m−3)

h :

Free heat transfer coefficient (W m−2 K−1)

C :

Concentration ratio (–)

T :

Temperature (K)

D :

Collector diameter (m)

s :

Radiant intensity (W m−2)

D :

Collector diameter (cm)

t :

Thickness (cm), time

L :

Length (cm)

k :

Thermal conductivity (W m−1 K−1)

c p :

Heat capacity (J kg−1 K−1)

\(\bar{R}\) :

Gas constant (mol m−1 K−1)

RaL :

Rayleigh number (–)

\(k_{0}\) :

Preexponential factor (kg m−3 s−1)

\(q_{\text{rad}}\) :

Radiation heat flux from concentrator (W m−2)

\(D_{{{\text{eff}},{\text{j}}}}\) :

Molecular diffusion coefficient (cm2 s−1)

\(k_{\text{cond}}\) :

Thermal conduction (W m−1 K−1)

\(r^{\prime \prime }\) :

Rate of reaction (kg m−3 s−1)

\(\psi_{\text{m}}\) :

Maximum angle of the solar disk (rad)

\(\rho_{\text{c}}\) :

Reflection coefficient (–)

\(\rho\) :

Density (kg m−3)

\(\nabla\) :

Delta

\(\varepsilon\) :

Porosity

\({{\varOmega }}\) :

Surface integration over the collector surface

f:

Fluid

C:

Collector

s:

Solid

rad:

Radiation

j:

Gas-phase component

aper:

Aperture

cav:

Cavity

ins:

Insulation

cond:

Conduction

r:

Reaction

a:

Activation

th:

Thermal

m:

Maximum

CFD:

Computational fluid dynamics

CO:

Carbon monoxide

CO2 :

Carbon dioxide

Zn:

Zinc

ZnO:

Zinc oxide

RPC:

Reticulated porous ceramic

AF:

Annual flow

O2 :

Oxygen

H2 :

Hydrogen

Ar:

Argon

References

  1. Koepf E, Alxneit I, Wieckert C, Meier A. A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute. Appl Energy. 2017;188(Supplement C):620–51. https://doi.org/10.1016/j.apenergy.2016.11.088.

    Article  CAS  Google Scholar 

  2. IEA. Key world energy statistics 2015. p. 81, ISBN: 9789264266544. https://doi.org/10.1787/key_energ_stat-2015-en.

  3. Müller R, Lipiński W, Steinfeld A. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl Therm Eng. 2008;28(5–6):524–31.

    Article  Google Scholar 

  4. Kodama T. High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energy Combust Sci. 2003;29(6):567–97.

    Article  CAS  Google Scholar 

  5. Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy. 2002;27(6):611–9. https://doi.org/10.1016/S0360-3199(01)00177-X.

    Article  CAS  Google Scholar 

  6. Koroneos C, Dompros A, Roumbas G, Moussiopoulos N. Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy. 2004;29(14):1443–50.

    Article  CAS  Google Scholar 

  7. Abanades S, Charvin P, Flamant G, Neveu P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy. 2006;31(14):2805–22. https://doi.org/10.1016/j.energy.2005.11.002.

    Article  CAS  Google Scholar 

  8. Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy. 1977;19(5):467–75.

    Article  CAS  Google Scholar 

  9. Kogan A. Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility study. Int J Hydrogen Energy. 1998;23(2):89–98.

    Article  CAS  Google Scholar 

  10. Perkins C, Weimer AW. Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy. 2004;29(15):1587–99. https://doi.org/10.1016/j.ijhydene.2004.02.019.

    Article  CAS  Google Scholar 

  11. Loutzenhiser PG, Meier A, Steinfeld A. Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials. 2010;3(11):4922.

    Article  Google Scholar 

  12. Roeb M, Neises M, Monnerie N, Call F, Simon H, Sattler C, et al. Materials-related aspects of thermochemical water and carbon dioxide splitting: a review. Materials. 2012;5(11):2015.

    Article  CAS  Google Scholar 

  13. Muhich CL, Evanko BW, Weston KC, Lichty P, Liang X, Martinek J, et al. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science. 2013;341(6145):540–2. https://doi.org/10.1126/science.1239454.

    Article  CAS  PubMed  Google Scholar 

  14. Perkins C, Lichty P, Weimer AW. Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem Eng Sci. 2007;62(21):5952–62.

    Article  CAS  Google Scholar 

  15. Schunk LO, Haeberling P, Wepf S, Wuillemin D, Meier A, Steinfeld A. A receiver-reactor for the solar thermal dissociation of zinc oxide. J Sol Energy Eng. 2008;130(2):021009.

    Article  Google Scholar 

  16. Abanades S, Charvin P, Flamant G. Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides: case study of zinc oxide dissociation. Chem Eng Sci. 2007;62(22):6323–33.

    Article  CAS  Google Scholar 

  17. Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N, Dersch J, et al. Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrogen Energy. 2009;34(10):4537–45.

    Article  CAS  Google Scholar 

  18. Villasmil W, Meier A, Steinfeld A. Dynamic modeling of a solar reactor for zinc oxide thermal dissociation and experimental validation using IR thermography. J Sol Energy Eng. 2013;136(1):010901–11. https://doi.org/10.1115/1.4025511.

    Article  CAS  Google Scholar 

  19. Schunk LO, Lipiński W, Steinfeld A. Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO—experimental validation at 10 kW and scale-up to 1MW. Chem Eng J. 2009;150(2):502–8. https://doi.org/10.1016/j.cej.2009.03.012.

    Article  CAS  Google Scholar 

  20. Roeb M, Säck J-P, Rietbrock P, Prahl C, Schreiber H, Neises M, et al. Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol Energy. 2011;85(4):634–44.

    Article  CAS  Google Scholar 

  21. Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels. 2012;26(11):7051–9.

    Article  CAS  Google Scholar 

  22. Lapp J, Davidson JH, LipiĹ W. Heat transfer analysis of a solid–solid heat recuperation system for solar-driven nonstoichiometric redox cycles. J Sol Energy Eng. 2013;135(3):031004.

    Article  Google Scholar 

  23. Lipiński W, Thommen D, Steinfeld A. Unsteady radiative heat transfer within a suspension of ZnO particles undergoing thermal dissociation. Chem Eng Sci. 2006;61(21):7029–35.

    Article  Google Scholar 

  24. Furler P, Steinfeld A. Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling. Chem Eng Sci. 2015;137:373–83. https://doi.org/10.1016/j.ces.2015.05.056.

    Article  CAS  Google Scholar 

  25. Cho HS, Gokon N, Kodama T, Kang YH, Kim JK. Simulation of flux distributions on the foam absorber with solar reactor for thermo-chemical two-step water splitting H2 production cycle by the 45 kWth KIER solar furnace. Energy Procedia. 2015;69:790–801. https://doi.org/10.1016/j.egypro.2015.03.088.

    Article  CAS  Google Scholar 

  26. Loutzenhiser PG, Steinfeld A. Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: thermodynamic cycle analysis. Int J Hydrogen Energy. 2011;36(19):12141–7. https://doi.org/10.1016/j.ijhydene.2011.06.128.

    Article  CAS  Google Scholar 

  27. Parthasarathy P, Le Clercq P. Heat transfer simulation in a high temperature solar reactor. Energy Procedia. 2015;69:1810–8. https://doi.org/10.1016/j.egypro.2015.03.154.

    Article  CAS  Google Scholar 

  28. Bader R, Bala Chandran R, Venstrom LJ, Sedler SJ, Krenzke PT, De Smith RM, et al. Design of a solar reactor to split CO2 via isothermal redox cycling of ceria. J Sol Energy Eng. 2015;137(3):031007.

    Article  Google Scholar 

  29. Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135(1):597–608.

    Article  CAS  Google Scholar 

  30. Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126(2):617–25.

    Article  CAS  Google Scholar 

  31. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135(1):763–86.

    Article  CAS  Google Scholar 

  32. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35.

    Article  CAS  Google Scholar 

  33. Kalogirou SA. Solar energy engineering: processes and systems. Cambridge: Academic Press; 2013.

    Google Scholar 

  34. Villasmil W, Cooper T, Koepf E, Meier A, Steinfeld A. Coupled concentrating optics, heat transfer, and thermochemical modeling of a 100-kWth high-temperature solar reactor for the thermal dissociation of ZnO. J Sol Energy Eng. 2017;139(2):021015.

    Article  Google Scholar 

  35. Li L, Chen C, Singh A, Rahmatian N, AuYeung N, Randhir K, et al. A transient heat transfer model for high temperature solar thermochemical reactors. Int J Hydrogen Energy. 2016;41(4):2307–25.

    Article  CAS  Google Scholar 

  36. Keunecke M, Meier A, Palumbo R. Solar thermal decomposition of zinc oxide: an initial investigation of the recombination reaction in the temperature range 1100–1250 K. Chem Eng Sci. 2004;59(13):2695–704.

    Article  CAS  Google Scholar 

  37. Jeter S. The distribution of concentrated solar radiation in paraboloidal collectors. J Sol Energy Eng. 1986;108(3):219–25.

    Article  CAS  Google Scholar 

  38. Shuai Y, Xia X-L, Tan H-P. Radiation performance of dish solar concentrator/cavity receiver systems. Sol Energy. 2008;82(1):13–21.

    Article  Google Scholar 

  39. Gstoehl D, Brambilla A, Schunk L, Steinfeld A. A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO. J Mater Sci. 2008;43(14):4729–36.

    Article  CAS  Google Scholar 

  40. Technologies. MAC. Alumina tubes and rods. http://www.mcdanelceramics.com/tubes_rods.html. Accessed 10 Oct 2018.

  41. Zirconia IZ. Alumina boards, discs and cylinders, type buster, Alumina and mullite blanket. http://zircarzirconia.com/products/type-busteralumina-boards-cylinders/. Accessed 10 Oct 2018.

  42. Ceramics IZ. MICROSIL microporous insulation. http://www.zircarceramics.com/pages/microporusinsulation/microporous.htm. Accessed 10 Oct 2018.

  43. Rohsenow WR, Hartnett J, Cho P. Handbook of heat transport. 3rd ed. Heat transfer in porous media. New York: McGraw-Hill; 1998. ISBN: 0-07-053555-8.

  44. Koepf E, Villasmil W, Meier A. Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle. Appl Energy. 2016;165(Supplement C):1004–23. https://doi.org/10.1016/j.apenergy.2015.12.106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mehrpooya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrpooya, M., Tabatabaei, S.H., Pourfayaz, F. et al. High-temperature hydrogen production by solar thermochemical reactors, metal interfaces, and nanofluid cooling. J Therm Anal Calorim 145, 2547–2569 (2021). https://doi.org/10.1007/s10973-020-09797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09797-3

Keywords

Navigation