Skip to main content
Log in

Thermal decomposed behavior and kinetic study for untreated and flame retardant treated regenerated cellulose fibers using thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, pyrolysis kinetic mechanism was studied for regenerated cellulosic fiber (RCF) and composite RCF containing silicon/nitrogen flame retardants. Limited oxygen index and microscale combustion calorimeter tests show that the loading of nitrogen/silicon into the RCF enhanced flame retardancy. The kinetic triplets of the two kinds of samples were determined by applying iso-conversional methods and integral master plots approach. Compared to the untreated RCF, flame retardant (FR) treated RCF shows enhanced activation energy due to the physical barrier layer due to dehydration of silicate and charring effect resulting from organic–inorganic interaction. Exponential nucleation model can be successful in describing experimental results for RCF in higher conversion degree (0.4–0.9). Simultaneously, the degradation process of FR treated RCF in the main pyrolysis stage (0.2–0.7) is consistent with kinetics of nuclei growth and could be described by one-step reaction whose rate presented an Avrami–Erofeev-type model (n = 2.38).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Uddin AJ, Yamamoto A, Gotoh Y, Nagura M, Iwata M. Preparation and physical properties of regenerated cellulose fibres from sugarcane bagasse. Text Res J. 2010;80(17):1846–58.

    CAS  Google Scholar 

  2. Perepelkin KE. Lyocell fibres based on direct dissolution of cellulose in N-methymorpholine N-oxide: development and prospects. Fibre Chem. 2007;39:163–72.

    CAS  Google Scholar 

  3. Calvin W. Regenerated cellulose fibres. Manchester: Textile Institute; 2001. p. 5.

    Google Scholar 

  4. Wang S, Lu A, Zhang L. Recent advances in regenerated cellulose materials. Prog Polym Sci. 2016;53:169–206.

    CAS  Google Scholar 

  5. Zhu P, Sui SY, Wang B, Sun K, Sun G. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrolysis. 2004;71:645–55.

    CAS  Google Scholar 

  6. Kandola BK, Horrocks AR, Price D, Coleman GV. Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci C Polym Rev. 1996;36(4):721–94.

    Google Scholar 

  7. Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J Thermal Anal Calorim. 2017;129:1201–13.

    CAS  Google Scholar 

  8. Bradbury AGW, Sakai Y, Shafizadeh F. Kinetic model for pyrolysis of cellulose. J Appl Polym Sci. 1979;23:3271–80.

    CAS  Google Scholar 

  9. Alves SS, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials by multi-stage isothermal thermogravimetry. J Anal Appl Pyrolysis. 1988;13(1–2):123–34.

    CAS  Google Scholar 

  10. Conesa JA, Caballero JA, Marcilla A, Font R. Analysis of different kinetic model, in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254:175–92.

    CAS  Google Scholar 

  11. Suriapparao DV, Ojha DK, Ray T, Vinu R. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J Thermal Anal Calorim. 2014;117:1441–51.

    CAS  Google Scholar 

  12. Baroni EG, Tannous K, Rueda-Ordonez YJ, Tinoco-Navarro LK. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis. J Thermal Anal Calorim. 2016;123:909–17.

    CAS  Google Scholar 

  13. Alves SS, Figueiredo JL. Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions. J Anal Appl Pyrolysis. 1989;17(1):37–46.

    CAS  Google Scholar 

  14. Burnham AK, Zhou XW, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuels. 2015;29(5):2906–18.

    CAS  Google Scholar 

  15. Capart R, Khezami L, Burnham AK. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim Acta. 2004;417:79–89.

    CAS  Google Scholar 

  16. Lin YC, Cho JM, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:20097–107.

    CAS  Google Scholar 

  17. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Pascual-Cosp J, Benitez-Guerrero M, Criado JM. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 2011;18:1487–98.

    CAS  Google Scholar 

  18. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;552:54–9.

    CAS  Google Scholar 

  19. Abou-Okei A, El-Sawy SM, Abdel-Mohdy FA. Flame retardant cotton fabrics treated with organophosphorous polymer. Carbohyd Polym. 2013;92(2):2293–8.

    Google Scholar 

  20. Moafi HF, Shojaie AF, Zanjanchi MA. Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. J Therm Anal Calorim. 2011;104:717–24.

    CAS  Google Scholar 

  21. Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA. Developments in flame retardant textiles—a review. Polym Degrad Stabil. 2005;88(1):3–12.

    CAS  Google Scholar 

  22. Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M. Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stabil. 2007;92(11):1957–65.

    CAS  Google Scholar 

  23. Yang ZY, Wang XY, Lei DP, et al. A durable flame retardant for cellulosic fabrics. Polym Degrad Stabil. 2012;97(11):2467–72.

    CAS  Google Scholar 

  24. Kivotidi S, Tsioptsias C, Pavlidou E, Panayiotou C. Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO2. J Therm Anal Calorim. 2013;111:475–82.

    CAS  Google Scholar 

  25. Price D, Horrocks AR, Akalin M, Faroq AA. Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis. 1997;40–41:511–24.

    Google Scholar 

  26. Poon CK, Kan CW. Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohyd Polym. 2015;121:457–67.

    CAS  Google Scholar 

  27. Zhang KK, Zhong L, Tan YQ, et al. Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohyd Polym. 2016;136:121–7.

    CAS  Google Scholar 

  28. Dahiya JB, Kumar K. Flame retardant study of cotton coated with intumescents: kinetics and effect of metal ions. J Sci Ind Res India. 2009;68:548–54.

    CAS  Google Scholar 

  29. Gann S, Sun G. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stabil. 2007;92:968–74.

    Google Scholar 

  30. Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol. 2018;250:422–8.

    CAS  PubMed  Google Scholar 

  31. Farjas J, Roura R. Isoconversional analysis of solid state transformations—a critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757–66.

    CAS  Google Scholar 

  32. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  33. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  34. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  35. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  36. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Poly Lett. 1968;6(4):323–8.

    Google Scholar 

  37. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversional methods. Thermochim Acta. 2003;404:163–76.

    CAS  Google Scholar 

  38. Chen JB, Wang YH, Lang XM, et al. Evaluation of agriculture residues pyrolysis under non-isothermal conditions: thermal behaviors, kinetics, and thermodynamics. Bioresour Technol. 2017;241:340–8.

    CAS  PubMed  Google Scholar 

  39. Qu LJ, Wang ZY, Qian J, et al. Effect of combined aluminum-silicon synergistic impregnation and heat treatment on the thermal stability, chemical components, and morphology of wood. BioResources. 2019;14(1):349–62.

    CAS  Google Scholar 

  40. Nassar MM, Fadali OA, Khattab MA. Thermal studies on paper treated with flame-retardant. Fire Mater. 1999;23:125–9.

    CAS  Google Scholar 

  41. Ven TVD, Godbout L. Cellulose: fundamental aspects. London: IntechOpen; 2013.

    Google Scholar 

  42. Soares S, Richardo NMPS, Jones S, Heatley F. High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR. Eur Polym J. 2001;37:737–45.

    CAS  Google Scholar 

  43. Tejada C, Herrera A, Ruiz E. Kinetic and isotherms of biosorption of Hg(II) using citric acid treated residual materials. Ing. Compet. 2016;18(1):117–27.

    Google Scholar 

  44. Brancatelli G, Colleoni C, Massafra MR, Rosace G. Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the behavior of cotton fabrics. Polym Degrad Stabil. 2011;96:483–90.

    CAS  Google Scholar 

  45. Horrocks AR. Developments in flame retardants for heat and fire resistant textiles-the role of char formation and intumescence. Polym Degrad Stabil. 1996;54(2–3):143–54.

    CAS  Google Scholar 

  46. Zhang MR, Rang GQ, Yao YB, et al. Study on structure and properties of silicon-Nitride flame retardant viscose fiber. Synth Fiber China. 2019;48(6):18–23.

    Google Scholar 

  47. Deka M, Saikia CN, Baruah KK. Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresour Technol. 2002;84:151–7.

    CAS  PubMed  Google Scholar 

  48. Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol. 2009;90:939–46.

    CAS  Google Scholar 

  49. Gao M, Pan DX. Study on the thermal degradation of wood treated with amino resin and amino resin modified with phosphoric acid. J Fire Sci. 2003;21:189–201.

    CAS  Google Scholar 

  50. Zhu FL, Xin Q, Feng QQ, et al. Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: remarkable synergistic effect? Surf Coat Technol. 2016;294:90–4.

    CAS  Google Scholar 

  51. Yao F, Wu QL, Lei Y, Guo WH, Xu YJ. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil. 2008;93(1):90–8.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2017YFB0309001) and the National Natural Science Foundation of China (51576215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F.L., Li, X. & Feng, Q.Q. Thermal decomposed behavior and kinetic study for untreated and flame retardant treated regenerated cellulose fibers using thermogravimetric analysis. J Therm Anal Calorim 145, 423–435 (2021). https://doi.org/10.1007/s10973-020-09780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09780-y

Keywords

Navigation