Skip to main content
Log in

Electrical and thermal analyses of solar PV module by considering realistic working conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Photovoltaic (PV) cells are used as clean energy technologies for generating electricity from solar irradiance. In designing and modeling of PV-based energy systems, it is crucial to consider their efficiency and the factors influencing it. Among the effective factors on the cell efficiency, temperature is very crucial. Ambient temperature, speed of wind and solar irradiance are among the most significant parameters which influence the cell temperature and its electrical output. In this regard, computation fluid dynamics is employed in the current study for determining cell temperature under different operating conditions. In order to achieve more realistic and accurate solution, the cell efficiency in the model is considered as a temperature-dependent variable. On the basis of determined temperatures by the model at high wind speed, ambient temperature impact on the cell performance becomes more remarkable. Finally, the outputs of numerical simulation are applied in an artificial neural network (GMDH type) to propose a predictive and simple-to-use model. The proposed model has reliable performance, and its maximum relative deviation does not exceed 0.04%. Employing the proposed model instead of computational fluid dynamic for predicting the PV performance will result in saving time. Moreover, using the ANN-based model is more cost-effective compared with experimental evaluation of PV efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmadi MH, Ramezanizadeh M, Nazari MA, Lorenzini G, Kumar R, Jilte R. Applications of nanofluids in geothermal: a review. Math Model Eng Probl. 2018;5:281–5.

    Article  Google Scholar 

  2. Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Pourfayaz F, Rahimzadeh M, Ming T. A review on solar-assisted gas turbines. Energy Sci Eng. 2018;6:658–74. https://doi.org/10.1002/ese3.238.

    Article  Google Scholar 

  3. Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low Carbon Technol. 2018;13:266–71.

    Article  CAS  Google Scholar 

  4. Mokhtari Shahdost B, Jokar MA, Razi Astaraei F, Ahmadi MH. Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery). J Therm Anal Calorim. 2019;137:2081–97.

    Article  CAS  Google Scholar 

  5. Ghorab M, Entchev E, Yang L. Inclusive analysis and performance evaluation of solar domestic hot water system (a case study). Alex Eng J. 2017;56:201–12.

    Article  Google Scholar 

  6. Wadhawan A, Dhoble AS, Gawande VB. Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alex Eng J. 2018;57:1173–83.

    Article  Google Scholar 

  7. El-Maghlany WM. An approach to optimization of double slope solar still geometry for maximum collected solar energy. Alex Eng J. 2015;54:823–8.

    Article  Google Scholar 

  8. Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination. 2018;435:221–34.

    Article  CAS  Google Scholar 

  9. Zhang W, Maleki A, Rosen MA. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J Clean Prod. 2019;241:117920.

    Article  Google Scholar 

  10. Maleki A, Pourfayaz F, Ahmadi MH. Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Sol Energy. 2016;139:666–75.

    Article  CAS  Google Scholar 

  11. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: a critical review. Energy Sci Eng. 2018;6:340–61.

    Article  Google Scholar 

  12. Cai W, Li X, Maleki A, Pourfayaz F, Rosen MA, Nazari MA, et al. Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy. 2020;15:117480. https://doi.org/10.1016/j.energy.2020.117480.

    Article  Google Scholar 

  13. Maleki A, Nazari MA, Pourfayaz F. Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit. Energy Rep. 2020. https://doi.org/10.1016/j.egyr.2020.03.014.

    Article  Google Scholar 

  14. Alhuyi Nazari M, Aslani A, Ghasempour R. Analysis of solar farm site selection based on TOPSIS approach. Int J Soc Ecol Sustain Dev. 2018;9:12–25.

    Article  Google Scholar 

  15. Ibrahim H, Anani N. Variations of PV module parameters with irradiance and temperature. Energy Proc. 2017;134:276–85.

    Article  Google Scholar 

  16. Balcombe P, Rigby D, Azapagic A. Energy self-sufficiency, grid demand variability and consumer costs: integrating solar PV, Stirling engine CHP and battery storage. Appl Energy. 2015;155:393–408. https://doi.org/10.1016/j.apenergy.2015.06.017.

    Article  Google Scholar 

  17. Kemme P, Zeiler W. Influence effect of energy roof on PV efficiency: a case study. Mediterr Green Build Renew Energy. 2017. https://doi.org/10.1007/978-3-319-30746-6_5.

    Article  Google Scholar 

  18. Hasanuzzaman M, Malek A, Islam M, Pandey A. Global advancement of cooling technologies for PV systems: a review. Sol Energy. 2016;137:25–45.

    Article  Google Scholar 

  19. Yunus Khan TM, Soudagar MEM, Kanchan M, Afzal A, Banapurmath NR, Akram N, et al. Optimum location and influence of tilt angle on performance of solar PV panels. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09089-5.

    Article  Google Scholar 

  20. Wu SY, Wang T, Xiao L, Shen ZG. Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system. Sol Energy. 2019;180:489–500.

    Article  Google Scholar 

  21. Tonui JK, Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low cost performance improvements. Sol Energy. 2007;81:498–511.

    Article  Google Scholar 

  22. Shahsavar A, Ameri M. Experimental investigation and modeling of a direct-coupled PV/T air collector. Sol Energy. 2010;84:1938–58.

    Article  Google Scholar 

  23. Royne A, Dey CJ. Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol Energy. 2007;81:1014–24.

    Article  CAS  Google Scholar 

  24. Al-Waeli AHA, Sopian K, Kazem HA, Yousif JH, Chaichan MT, Ibrahim A, et al. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol Energy. 2018;162:378–96.

    Article  CAS  Google Scholar 

  25. Ebaid MSY, Ghrair AM, Al-Busoul M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water–polyethylene glycol mixture and (Al2O3) nanofluid in water–cetyltrimethylammonium bromide mixture. Energy Convers Manag. 2018;155:324–43.

    Article  CAS  Google Scholar 

  26. Salem MR, Elsayed MM, Abd-Elaziz AA, Elshazly KM. Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques. Renew Energy. 2019;138:876–90.

    Article  CAS  Google Scholar 

  27. Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry (Basel). 2020;12:120.

    Article  CAS  Google Scholar 

  28. Alizadeh H, Ghasempour R, Shafii MB, Ahmadi MH, Yan W-M, Nazari MA. Numerical simulation of PV cooling by using single turn pulsating heat pipe. Int J Heat Mass Transf. 2018;127:203–8.

    Article  Google Scholar 

  29. Ibrahim A. Analysis of electrical characteristics of photovoltaic single crystal silicon solar cells at outdoor measurements. Smart Grid Renew Energy. 2011;02:169–75.

    Article  CAS  Google Scholar 

  30. Jamali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Hamrang S. Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Eng Appl Artif Intell. 2009;22:676–87.

    Article  Google Scholar 

  31. Malekan M, Khosravi A, Goshayeshi HR, Assad MEH, Garcia Pabon JJ. Thermal resistance modeling of oscillating heat pipes for nanofluids by artificial intelligence approach. J Heat Transf. 2019;141:7.

    Article  CAS  Google Scholar 

  32. Kewalramani MA, Gupta R. Group method of data handling algorithms to predict compressive strength of concrete based on absorbed extraterrestrial solar radiations. Key Eng Mater. 2016;689:108–13.

    Article  Google Scholar 

  33. Ahmadi MH, Sadeghzadeh M, Raffiee AH, Chau K. Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Eng Appl Comput Fluid Mech. 2019;13:327–36.

    Google Scholar 

  34. Komeilibirjandi A, Raffiee AH, Maleki A, Alhuyi Nazari M, Safdari Shadloo M. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08838-w.

    Article  Google Scholar 

  35. Ramezanizadeh M, AlhuyiNazari M, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08154-3.

    Article  Google Scholar 

  36. Ramezanizadeh M, Alhuyi Nazari M. Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network. Int J Low Carbon Technol. 2019. https://doi.org/10.1093/ijlct/ctz030/5552090.

    Article  Google Scholar 

  37. Maleki A, Elahi M, Assad MEH, Alhuyi Nazari M, Safdari Shadloo M, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020;128:1–12.

    Google Scholar 

  38. Zoqi MJ, Ghamgosar M, Ganji M, Fallahi S. Application of GMDH and genetic algorithm in fraction in biogas from landfill modeling. JEnviron Sci Technol. 2016;18:1–12.

    Google Scholar 

  39. Mohamadian F, Eftekhar L, Haghighi Bardineh Y. Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid. Nanomed J. 2018;5:217–21.

    CAS  Google Scholar 

  40. Du Y, Fell CJ, Duck B, Chen D, Liffman K, Zhang Y, et al. Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Convers Manag. 2016;108:60–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China “study on water vapor transport and convergence mechanism of continuous rainstorm in western southern Xinjiang” 41965002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Thao Thi Ngo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} {\text{PV}}\;{\text{temperature}} & = 0.0231958 - \text{``}x2,cubert \text{''} *0.0316685 \\ & \quad + \text{``}x2,cubert\text{''}^{2} *0.0106318 + N2*1.00001 \\ \end{aligned}$$

Cubert refers to cube root of the variable. The coefficients of the above relationships are determined as follows:

$$\begin{aligned} N2 & = 0.00647592 + N7*0.999046 - N7 \\ & \quad *N3*0.092254 + N3^{2} *0.0922887 \\ N3 & = 0.00261091 + N211*N4*0.000824379 \\ & \quad - N211^{2} *0.000810837 + N4*0.999622 \\ \end{aligned}$$
$$\begin{aligned} N4 & = 0.00317369 - N175*N5*0.00173443 \\ & \quad + N5*0.999537 + N5^{2} *0.00175109 \\ N5 & = -\,0.00107796 - N132*0.908563 - N132*N6 \\ & \quad *0.0658552 + N132^{2} *0.0658494 + N6*1.90872 \\ N6 & = 1.2314e - 05 - N18*0.379204 + N7*1.3792 \\ \end{aligned}$$
$$\begin{aligned} N18 & = 0.152712 - \text{``}x2, cubert\text{''} *0.209675 \\ & \quad + \text{``}x2, cubert\text{''}^{2} *0.0712132 + N33*0.999968 \\ N33 & = 0.00936582 + N135*2.49913 - N135*N50 \\ & \quad *0.206423 - N50*1.50049 + N50^{2} *0.206473 \\ N50 & = -\, 3.71406e - 05 + N72 \\ & \quad *0.420583 + N80*0.579419 \\ \end{aligned}$$
$$\begin{aligned} N72 & = - 0.00220666 + N86 \\ & \quad *0.91771 + N223*0.0824507 \\ N86 & = -\, 0.240458 + N288*0.140302 + N288 \\ & \quad *N183*0.0850968 - N288^{2} *0.0497795 \\ & \quad + N183*0.902546 - N183^{2} *0.0371009 \\ N135 & = 0.00384783 + N144*0.999371 + N144 \\ & \quad *N178*0.0147639 - N144^{2} *0.0147388 \\ \end{aligned}$$
$$\begin{aligned} N178 & = -\, 0.341559 + N222*1.05714 \\ & \quad + N222*N272*0.756685 - N222^{2} \\ & \quad *0.381096 - N272^{2} *0.377694 \\ \end{aligned}$$
$$\begin{aligned} N272 & = 1.39321 + N283*0.73278 \\ & \quad - N283*N288*0.200142 + N283^{2} \\ & \quad *0.0936019 + N288^{2} *0.118237 \\ \end{aligned}$$
$$\begin{aligned} N132 & = 0.0107129 - N279*N144*0.0889394 \\ & \quad + N279^{2} *0.0440109 + N144 \\ & \quad *0.998501 + N144^{2} *0.0449539 \\ \end{aligned}$$
$$\begin{aligned} N211 & = -\, 2.43905 + N234*N274*1.10337 \\ & \quad - N234^{2} *0.514654 + N274 \\ & \quad *1.37029 - N274^{2} *0.602303 \\ \end{aligned}$$
$$\begin{aligned} N274 & = -\, 0.743314 + N285*1.04661 \\ & \quad - N285*N288*0.196438 + N285^{2} \\ & \quad *0.08035 + N288^{2} *0.116391 \\ \end{aligned}$$
$$\begin{aligned} N234 & = 0.478429 + N247*1.65665 - N247 \\ & \quad *N270*0.806042 + N247^{2} *0.377994 \\ & \quad - N270*0.731898 + N270^{2} *0.430775 \\ \end{aligned}$$
$$\begin{aligned} N7 & = -\, 0.00446863 + N263*N8 \\ & \quad *0.0433208 - N263^{2} *0.0216105 \\ & \quad + N8*1.00096 - N8^{2} *0.0217491 \\ \end{aligned}$$
$$\begin{aligned} N8 & = 0.00172127 + N70*N10*0.0228501 \\ & \quad - N70^{2} *0.022841 + N10.999748 \\ \end{aligned}$$
$$\begin{aligned} N10 & \quad = -\, 9.03766e - 06 + N11 \\ & \quad *0.554263 + N13*0.445738 \\ \end{aligned}$$
$$\begin{aligned} N13 & = 8.91061e - 05 - N103 \\ & \quad *0.180372 + N19*1.18037 \\ \end{aligned}$$
$$\begin{aligned} N19 & = 0.152712 - \text{``}x2, cubert\text{''} *0.209675 \\ & \quad + \text{``}x2, cubert\text{''}^{2} *0.0712132 + N31*0.999968 \\ \end{aligned}$$
$$\begin{aligned} N31 & = 0.00936581 + N136*2.49912 \\ & \quad - N136*N49*0.206423 - N49 \\ & \quad *1.50049 + N49^{2} *0.206472 \\ \end{aligned}$$
$$\begin{aligned} N49 & = -\, 3.71406e - 05 + N71 \\ & \quad *0.420583 + N80*0.579419 \\ \end{aligned}$$
$$\begin{aligned} N80 & = 4.97292 - \text{``}x1, cubert\text{''} *1.02295 \\ & \quad + \text{``}x1, cubert\text{''} *N151*0.00280606 \\ & \quad + \text{``}x1, cubert\text{''}^{2} *0.0528973 + N151 \\ & \quad *0.967288 + N151^{2} *0.000218337 \\ \end{aligned}$$
$$\begin{aligned} N151 & = -\, 0.0949699 + N194*0.918072 \\ & \quad + N194*N287*0.112501 \\ & \quad - N194^{2} *0.0514051 + N287 \\ & \quad *0.103919 - N287^{2} *0.0621251 \\ \end{aligned}$$
$$\begin{aligned} N287 & = -\, 1.53933e - 11 + N289 \\ & \quad *0.505814 + N288*0.494186 \\ \end{aligned}$$
$$\begin{aligned} N223 & = 0.880811 + N239*1.97695 - N239 \\ & \quad *N268*1.0462 + N239^{2} *0.487292 \\ & \quad - N268*1.11051 + N268^{2} *0.56367 \\ \end{aligned}$$
$$\begin{aligned} N268 & = -\, 7.25972 + N285*0.951151 \\ & \quad + N290*0.576199 \\ \end{aligned}$$
$$\begin{aligned} N103 & = -\, 0.0515652 + N141*1.00751 \\ & \quad + N141*N175*0.025256 \\ & \quad - N141^{2} *0.0255262 \\ \end{aligned}$$
$$\begin{aligned} N175 & = 0.00596692 + N207*0.995909 \\ & \quad - N207*N279*0.390179 + N207^{2} \\ & \quad *0.195468 + N279^{2} *0.194852 \\ \end{aligned}$$
$$\begin{aligned} N279 & = -\, 57.7188 + N291*7.96579 - N291^{2} \\ & \quad *0.270193 + N288*0.954365 \\ \end{aligned}$$
$$\begin{aligned} N207 & = -\, 110.262 + \text{``}x3, cubert\text{''} *39.5695 \\ & \quad - \text{``}x3, cubert\text{''} *N235*1.28097 \\ & \quad - \text{``}x3, cubert\text{''}^{2} *3.57949 + N235 \\ & \quad *8.2203 - N235^{2} *0.119627 \\ \end{aligned}$$
$$\begin{aligned} N141 & = -\, 0.0954672 + N194*1.16815 - N194 \\ & \quad *N260*0.000722723 - N260*0.151148 \\ \end{aligned}$$
$$\begin{aligned} N260 & = -\, 2.20828 + N273*N280*0.68587 \\ & \quad - N273^{2} *0.323532 + N280*1.31479 \\ & \quad - N280^{2} *0.373014 \\ \end{aligned}$$
$$\begin{aligned} N280 & = -\, 57.7188 + N289*0.954365 \\ & \quad + N291*7.96579 - N291^{2} *0.270193 \\ \end{aligned}$$
$$\begin{aligned} N11 & = 0.0189442 - N261*N22*0.0317829 \\ & \quad + N261^{2} *0.0159293 + N22 \\ & \quad *0.996999 + N22^{2} *0.0159654 \\ \end{aligned}$$
$$\begin{aligned} N22 & = 0.0228881 + N235*0.0873567 - N235 \\ & \quad *N32*0.464764 + N235^{2} *0.229053 \\ & \quad + N32*0.909114 + N32^{2} *0.235838 \\ \end{aligned}$$
$$\begin{aligned} N32 & = 0.00936581 + N136*2.49912 \\ & \quad - N136*N43*0.206423 - N43 \\ & \quad *1.50049 + N43^{2} *0.206472 \\ \end{aligned}$$
$$\begin{aligned} N43 & = -\, 3.71406e - 05 + N73*0.420583 \\ & \quad + N81*0.579419 \\ \end{aligned}$$
$$\begin{aligned} N81 & = 4.97292 - \text{``}x1, cubert\text{''} *1.02295 \\ & \quad + \text{``}x1, cubert\text{''} *N152*0.00280606 \\ & \quad + \text{``}x1, cubert\text{''}^{2} *0.0528973 + N152 \\ & \quad *0.967288 + N152^{2} *0.000218337 \\ \end{aligned}$$
$$\begin{aligned} N152 & = -\, 0.0949699 + N288*0.103919 \\ & \quad + N288*N194*0.112501 - N288^{2} \\ & *0.0621251 + N194*0.918072 \\ & \quad - N194^{2} *0.0514051 \\ \end{aligned}$$
$$\begin{aligned} N194 & = -\, 0.0828595 + N214*1.00463 \\ & \quad - N214*N285*0.073721 + N214^{2} \\ & \quad *0.0346316 + N285^{2} *0.0391432 \\ \end{aligned}$$
$$N285 = 4.00183e - 12 + N286*1$$
$$N288 = -\, 1.90377e - 11 + N289*1$$
$$\begin{aligned} N136 & = 0.00384783 + N144*0.999371 + N144 \\ & \quad *N177*0.0147639 - N144^{2} *0.0147388 \\ \end{aligned}$$
$$\begin{aligned} N177 & = -\, 0.341559 + N222*1.05714 \\ & \quad + N222*N271*0.756685 - N222^{2} \\ & \quad *0.381096 - N271^{2} *0.377694 \\ \end{aligned}$$
$$\begin{aligned} N271 & = 1.39321 - N289*N283*0.200142 \\ & \quad + N289^{2} *0.118237 + N283 \\ & \quad *0.73278 + N283^{2} *0.0936019 \\ \end{aligned}$$
$$\begin{aligned} N222 & = 0.805898 + N235*2.0658 - N235 \\ & \quad *N270*0.952221 + N235^{2} *0.436849 \\ & \quad - N270*1.18723 + N270^{2} *0.519673 \\ \end{aligned}$$
$$\begin{aligned} N144 & = -\, 0.052361 - N286*N186*0.14162 \\ & \quad + N286^{2} *0.072843 + N186 \\ & \quad *0.99962 + N186^{2} *0.0689882 \\ \end{aligned}$$
$$\begin{aligned} N186 & = -\, 0.84518 + \text{``}x2, cubert\text{''} *1.06288 \\ & \quad - \text{``}x2, cubert\text{''}^{2} *0.297821 + N214*0.994919 \\ \end{aligned}$$
$$\begin{aligned} N235 & = -\, 8.3909 + \text{``}x2, cubert\text{''} *7.65986 \\ & \quad - \text{``}x2, cubert\text{''} *N289*0.041149 \\ & \quad - \text{``}x2, cubert\text{''}^{2} *1.43983 + N289*1.07564 \\ \end{aligned}$$
$$\begin{aligned} N261 & = 0.634361 - \text{``}x1, cubert\text{''}^{2} *0.0202351 \\ & \quad + N270*1.19384 - N270^{2} *0.00794511 \\ \end{aligned}$$
$$\begin{aligned} N270 & = -\, 7.25972 + N286*0.951151 \\ & \quad + N291*0.576199 \\ \end{aligned}$$
$$\begin{aligned} N70 & = 0.0002238 - N158*0.20047 \\ & \quad + N73*1.20045 \\ \end{aligned}$$
$$\begin{aligned} N73 & = -\, 0.00220666 + N85*0.91771 \\ & \quad + N224*0.0824507 \\ \end{aligned}$$
$$\begin{aligned} N224 & = 0.880811 + N239*1.97695 \\ & \quad - N239*N269*1.0462 \\ & \quad + N239^{2} *0.487292 - N269 \\ & \quad *1.11051 + N269^{2} *0.56367 \\ \end{aligned}$$
$$\begin{aligned} N269 & = -\, 7.25972 + N286*0.951151 \\ & \quad + N290*0.576199 \\ \end{aligned}$$
$$N290 = 5.1583e - 11 + N291*1$$
$$\begin{aligned} N239 & \quad = -\, 2.85763 + \text{``}x2, cubert\text{''} *3.89983 \\ & \quad - \text{``}x2, cubert\text{''}^{2} *1.31306 \\ & \quad + N247*0.999956 \\ \end{aligned}$$
$$\begin{aligned} N247 & = 3.22139 + \text{``}x1, cubert\text{''} *N286*0.0229248 \\ & \quad - \text{``}x1, cubert\text{''}^{2} *0.0639829 + N286*1.13969 \\ & \quad - N286^{2} *0.0129041 \\ \end{aligned}$$
$$\begin{aligned} N85 & = -\, 0.240458 + N289*0.140302 \\ & \quad + N289*N183*0.0850968 - N289^{2} \\ & \quad *0.0497795 + N183*0.902546 \\ & \quad - N183^{2} *0.0371009 \\ \end{aligned}$$
$$\begin{aligned} N183 & \quad = 5.94237 - \text{``}x1, cubert\text{''} *1.35722 \\ & \quad + \text{``}x1, cubert\text{''}^{2} *0.0759933 \\ & \quad + N214*1.00592 \\ \end{aligned}$$
$$\begin{aligned} N158 & = 0.354255 - N283*N196*0.146762 \\ & \quad + N283^{2} *0.0755541 + N196 \\ & \quad *0.938916 + N196^{2} *0.0736527 \\ \end{aligned}$$
$$\begin{aligned} N196 & \quad = -\, 0.338869 - N289^{2} \\ & \quad *0.0022405 + N214*1.0558 \\ \end{aligned}$$
$$\begin{aligned} N214 & = -\, 38.9389 + \text{``}x3, cubert\text{''} *5.99525 \\ & \quad - \text{``}x3, cubert\text{''} *N291*0.0790012 \\ & \quad - \text{``}x3, cubert\text{''}^{2} *1.60002 + N291 \\ & \quad *6.39682 - N291^{2} *0.185338 \\ \end{aligned}$$
$$\begin{aligned} N291 & = 14.2519 - \text{``}x1, cubert\text{''}^{2} \\ & \quad *0.0478873 + \text{``}x2, cubert\text{''} *2.4899 \\ \end{aligned}$$
$$\begin{aligned} N283 & = 2.18225 + \text{``}x3, cubert\text{''} *N286 \\ & \quad *0.101307 - \text{``}x3, cubert\text{''}^{2} \\ & \quad *0.227686 + N286*0.69054 \\ \end{aligned}$$
$$\begin{aligned} N263 & = 0.262529 + \text{``}x2, cubert\text{''} *N273 \\ & \quad *0.0965029 + N273*0.836305 \\ \end{aligned}$$
$$\begin{aligned} N273 & = -\, 0.743314 + N286*1.04661 \\ & \quad - N286*N289*0.196438 + N286^{2} \\ & \quad *0.08035 + N289^{2} *0.116391 \\ \end{aligned}$$
$$\begin{aligned} N289 & = 19.2327 - \text{``}x1, cubert\text{''}^{2} \\ & \quad *0.0466787 + \text{``}x3, cubert\text{''} *4.04301 \\ & \quad - \text{``}x3, cubert\text{''}^{2} *1.44745 \\ \end{aligned}$$
$$\begin{aligned} N286 & = 17.175 + \text{``}x2, cubert\text{''} *2.81578 \\ & \quad - \text{``}x3, cubert\text{''}^{2} *0.800226 \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kamari, M.L., Haghighat, S. et al. Electrical and thermal analyses of solar PV module by considering realistic working conditions. J Therm Anal Calorim 144, 1925–1934 (2021). https://doi.org/10.1007/s10973-020-09752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09752-2

Keywords

Navigation