Skip to main content
Log in

Molecular dynamics simulation on explosive boiling of thin liquid argon films on cone-shaped Al–Cu-based nanostructures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effects of Al and Cu nanostructures on the explosive boiling of a thin layer of liquid argon atoms on the Al and Cu substrates using molecular dynamics method. The results indicate that employing cone-shaped nanostructured surfaces leads to creation of thinner primary liquid layer as compared to the common Al or Cu smooth surfaces. Results show that using a cone-shaped nanostructured surface leads to a higher heat transfer rate and subsequently faster evaporating rate of the liquid layers due to increase in the solid–liquid contact area. In addition, it was found that Cu nanostructure has a more effective role in amplifying the explosive boiling, in comparison with Al nanostructure. The results further show that using the Al and Cu cone-shaped nanostructures on an Al smooth surface can increase the heat transfer by 29% and 38.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ogoh W, Groulx D. Effects of the heat transfer fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system : a numerical study. Heat Mass Transf. 2012;48(3):439–49.

    CAS  Google Scholar 

  2. Akram N, Sadri R, Kazi SN, Ahmed SM, Zubir MNM, Ridha M, et al. An experimental investigation on the performance of a flat-plate solar collector using eco-friendly treated graphene nanoplatelets–water nanofluids. J Therm Anal Calorim. 2019;138:609–21.

    CAS  Google Scholar 

  3. György S, Károly Z, Fazekas P, Németh P, Bódis E, Menyhárd A, et al. Effect of the reaction temperature on the morphology of nanosized HAp. J Therm Anal Calorim. 2019;138:145–51.

    Google Scholar 

  4. Yu Q, Lu Y, Zhang C, Wu Y, Sunden B. Experimental and numerical study of natural convection in bottom-heated cylindrical cavity filled with molten salt nanofluids. J Therm Anal Calorim. 2019;18:1–3.

    Google Scholar 

  5. Awad AH. Modeling nanostructure lattice thermal conductivity. J Therm Anal Calorim. 2015;119:1459–67.

    CAS  Google Scholar 

  6. Kumar V, Sarkar J. Research and development on composite nanofluids as next-generation heat transfer medium. J Therm Anal Calorim. 2019;137:1133–54.

    CAS  Google Scholar 

  7. Jegadheeswaran S, Sundaramahalingam A, Pohekar SD. High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems. J Therm Anal Calorim. 2019;138:1137–66.

    CAS  Google Scholar 

  8. Vasquez ES, Prehn EM, Walters KB. Assessing magnetic iron oxide nanoparticle properties under different thermal treatments. J Therm Anal Calorim. 2019;41:1–2. https://doi.org/10.1007/s10973-019-09195-4.

    Article  CAS  Google Scholar 

  9. Setoodeh H, Keshavarz A, Ghasemian A, Nasouhi A. Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: an experimental study. Appl Therm Eng. 2015;90:384–94.

    CAS  Google Scholar 

  10. Jiang X, Ling C, Wang Z, Lu J. The effect of Cu–Zn distribution in zincian malachite on the formation of individual CuO and ZnO particles. J Therm Anal Calorim. 2019;137:1519–25.

    CAS  Google Scholar 

  11. Pourrajab R, Noghrehabadi A, Behbahani M, Hajidavalloo E. An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J Therm Anal Calorim. 2020;16:1–3.

    Google Scholar 

  12. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019;138:827–43.

    CAS  Google Scholar 

  13. Keklikcioglu CN. The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. J Therm Anal Calorim. 2019;139(3):1895–902.

    Google Scholar 

  14. Lu Q, Mao SS, Mao X, Russo RE. Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl Phys Lett. 2002;80:3072–4.

    CAS  Google Scholar 

  15. Yoo JH, Jeong SH, Mao XL, Greif R, Russo RE. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl Phys Lett. 2000;76:783–5.

    CAS  Google Scholar 

  16. Kudryashov SI, Allen SD. Submicrosecond dynamics of water explosive boiling and lift-off from laser-heated silicon surfaces. J Appl Phys. 2006;100:104908.

    Google Scholar 

  17. Karim ET, Lin Z, Zhigilei L V. Molecular dynamics study of femtosecond laser interactions with Cr targets. In: AIP conference proceedings. American Institute of Physics. 2012; pp. 280–93.

  18. Park HK, Grigoropoulos CP, Poon CC, Tam AC. Optical probing of the temperature transients during pulsed-laser induced boiling of liquids. Appl Phys Lett. 1996;68:596–8.

    CAS  Google Scholar 

  19. Karabutov AA, Kubyshkin AP, Panchenko VY, Podymova NB. Dynamic shift of the boiling point of a metal under the influence of laser radiation. Quantum Electron. 1995;25:789–93.

    Google Scholar 

  20. Dou Y, Zhigilei LV, Winograd N, Garrison BJ. Explosive boiling of water films adjacent to heated surfaces: a microscopic description. Washington, DC: American Chemical Society; 2001.

    Google Scholar 

  21. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  22. Shafee A, Rezaeianjouybari B, Sheikholeslami M, Allahyari M, Babazadeh H. Boiling process with incorporating nanoparticles through a flattened channel using experimental approach. J Therm Anal Calorim. 2020;24:1–8.

    Google Scholar 

  23. Gu X, Urbassek HM. Atomic dynamics of explosive boiling of liquid–argon films. Appl Phys B. 2005;81:675–9.

    CAS  Google Scholar 

  24. Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl Therm Eng. 2017;113:1345–57.

    CAS  Google Scholar 

  25. Dou Y, Zhigilei LV, Winograd N, Garrison BJ. Explosive boiling of water films adjacent to heated surfaces: a microscopic description. J Phys Chem A. 2001;105:2748–55.

    CAS  Google Scholar 

  26. Yao Z, Lu YW, Kandlikar SG. Effects of nanowire height on pool boiling performance of water on silicon chips. Int J Therm Sci. 2011;50:2084–90.

    CAS  Google Scholar 

  27. Kamel MS, Lezsovits F, Hussein AK. Experimental studies of flow boiling heat transfer by using nanofluids. J Therm Anal Calorim. 2019;138:4019–43.

    CAS  Google Scholar 

  28. Chen R, Lu MC, Srinivasan V, Wang Z, Cho HH, Majumdar A. Nanowires for enhanced boiling heat transfer. Nano lett. 2009;9(2):548–53.

    PubMed  Google Scholar 

  29. Betz AR, Xu J, Qiu H, Attinger D, Betz AR, Xu J, et al. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling ? Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling ? Appl Phys Lett. 2013;141909:2012–5.

    Google Scholar 

  30. Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Transf. 2014;71:189–96.

    Google Scholar 

  31. Reza Seyf H, Zhang Y. Molecular dynamics simulation of normal and explosive boiling on nanostructured surface. J Heat Transf. 2013;135:121503.

    Google Scholar 

  32. Weirong W, Shenghong H, Xisheng L. International Journal of Heat and Mass Transfer MD simulation on nano-scale heat transfer mechanism of sub-cooled boiling on nano-structured surface. Int J Heat Mass Transf. 2016;100:276–86.

    Google Scholar 

  33. Seyf HR, Zhang Y. Effect of nanotextured array of conical features on explosive boiling over a flat substrate: a nonequilibrium molecular dynamics study. Int J Heat Mass Transf. 2013;66:613–24.

    CAS  Google Scholar 

  34. Morshed AKMM, Paul TC, Khan JA. Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study. Appl Phys A. 2011;105:445–51.

    CAS  Google Scholar 

  35. Yamamoto T, Matsumoto M. Initial stage of nucleate boiling: molecular dynamics investigation. J Therm Sci Technol. 2012;7:334–49.

    CAS  Google Scholar 

  36. Schoen PAE, Poulikakos D, Arcidiacono S. Phase change of a confined subcooled simple liquid in a nanoscale cavity. Phys Rev E Stat Nonlinear Soft Matter Phys. 2005;71(4):041602.

    CAS  Google Scholar 

  37. Fu T, Mao Y, Tang Y, Zhang Y, Yuan W. Molecular dynamics simulation on rapid boiling of thin water films on cone-shaped nanostructure surfaces. Nanoscale Microscale Thermophys Eng. 2015;19:17–30.

    CAS  Google Scholar 

  38. Wang Y-H, Wang S-Y, Lu G, Wang X-D. Explosive boiling of nano-liquid argon films on high temperature platinum walls: effects of surface wettability and film thickness. Int J Therm Sci. 2018;132:610–7.

    CAS  Google Scholar 

  39. Yi P, Poulikakos D, Walther J, Yadigaroglu G. Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transf. 2002;45:2087–100.

    CAS  Google Scholar 

  40. Qanbarian M, Qasemian A, Arab B. Molecular dynamics simulation of enhanced heat transfer through conical Al/Cu nanostructures. Comput Mater Sci. 2020;180:109710.

    CAS  Google Scholar 

  41. Xu Z, Ge D, Zhang L. Simulation and prediction on phonon thermal conductivity of Al/Cu interface. J Phys Chem Solids. 2018;122:184–8.

    CAS  Google Scholar 

  42. Watanabe H, Ito N, Hu C-K. Phase diagram and universality of the Lennard–Jones gas–liquid system. J Chem Phys. 2012;136:204102.

    PubMed  Google Scholar 

  43. Zabaloy MS, Vasquez VR, Macedo EA. Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data. Fluid Phase Equilib. 2006;242:43–56.

    CAS  Google Scholar 

  44. Zhang S, Hao F, Chen H, Yuan W, Tang Y, Chen X. Molecular dynamics simulation on explosive boiling of liquid argon film on copper nanochannels. Appl Therm Eng. 2017;113:208–14.

    CAS  Google Scholar 

  45. Nejatolahi M, Golneshan AA, Kamali R, Sabbaghi S. Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids. J Therm Anal Calorim. 2020;5:1–5.

    Google Scholar 

  46. Mao Y, Zhang Y. Molecular dynamics simulation on rapid boiling of water on a hot copper plate. Appl Therm Eng. 2014;62:607–12.

    CAS  Google Scholar 

  47. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    CAS  Google Scholar 

  48. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR, Berendsen HJC, et al. Molecular dynamics with coupling to an external bath Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90.

    CAS  Google Scholar 

  49. Zhang H, Li C, Zhao M, Zhu Y, Wang W. Influence of interface wettability on normal and explosive boiling of ultra-thin liquid films on a heated substrate in nanoscale: a molecular dynamics study. Micro Nano Lett. 2017;12:843–8.

    CAS  Google Scholar 

  50. Diaz R, Guo Z. Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer. Numer Heat Transf Part A Appl. 2017;72:891–903.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Qasemian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasemian, A., Qanbarian, M. & Arab, B. Molecular dynamics simulation on explosive boiling of thin liquid argon films on cone-shaped Al–Cu-based nanostructures. J Therm Anal Calorim 145, 269–278 (2021). https://doi.org/10.1007/s10973-020-09748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09748-y

Keywords

Navigation