Skip to main content
Log in

Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the mechanism of radiative Oldroyd-B nanofluid flow over a rotating disk with activation energy and motile microorganisms is examined. The perspective of fluid flow due to disk rotation encompasses both theoretical and practical relevance of it in engineering and applied sciences. Nonlinear ordinary differential equations are firstly converted from the corresponding partial differential equations and are formerly renovated using appropriate transformation to achieve set of nondimensional equations that were subsequently solved by shooting technique. The solution for regulating flow equations is carried out with the execution of the prominent numerical method bvp4c built-in function of MATLAB software. The observed response is supported by a comparison with existing resources, and a comprehensive graphical representation has been taken into account for parameters such as Deborah number, buoyancy ratio parameter, thermophoresis, Brownian motion, Biot number, and for motile microorganisms. Graphs and tables demonstrate the pertinent flow characteristics of the governing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

u, v, w :

Velocity components

γ, φ, z :

Cylindrical coordinates

\(Nur\) :

Local Nusselt number

\(\tilde{C}_{\infty }\) :

Ambient concentration

\(\tilde{N}_{\infty }\) :

Ambient motile microorganisms

\(\left( {\rho c} \right)_{\text{f}}\) :

Heat capacity of fluid

\({\text{Sn}}_{\text{r}}\) :

Local microorganism number

\(\tilde{N}\) :

Motile microorganisms

\(\tilde{C}\) :

Nanoparticles concentration

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(E_{\text{a}}\) :

Activation energy coefficient

\(L\) :

Velocity ratio parameter

\({\text{Rd}}\) :

Radiation parameter

\({\text{Nt}}\) :

Thermophoresis parameter

\(\theta_{\text{f}}\) :

Temperature ratio parameter

\({\text{Nr}}\) :

Buoyancy ratio constant

\(E\) :

Activation energy parameter

\(D_{\text{T}}\) :

Coefficient of thermal diffusion

\(w_{\text{c}}\) :

Cell swimming speed

\(S_{1}\) :

Thermal stratification Biot number

\(S_{3}\) :

Microorganism stratification Biot number

\(\tilde{T}_{\text{w}}\) :

Wall temperature

\(F\left( \zeta \right)\) :

Radial velocity

\(H\left( \zeta \right)\) :

Axial velocity

\(\text{Re}_{\text{x}}\) :

Reynolds number

\(Q\) :

Heat source/sink coefficient

\({\text{Sh}}_{\text{r}}\) :

Local Sherwood number

\(\tilde{T}_{\infty }\) :

Ambient temperature

\(B_{0}\) :

Magnetic field strength

\(\left( {\rho c} \right)_{\text{p}}\) :

Heat capacity of nanoparticles

\({\text{Lb}}\) :

Bioconvection Lewis number

\(\tilde{T}\) :

Temperature

\(b\) :

Chemotaxis constant

\({\text{Kr}}\) :

Chemical reaction constant

\(M\) :

Magnetic parameter

\(S\) :

Velocity ratio constant

\(\Pr\) :

Prandtl number

\({\text{Nb}}\) :

Brownian motion parameter

\({\text{Le}}\) :

Lewis number

\({\text{Nc}}\) :

Bioconvection Rayleigh number

\({\text{Pe}}\) :

Peclet number

\(D_{\text{m}}\) :

Microorganisms diffusion coefficient

\(w_{\text{s}}\) :

Suction/injection constant

\(S_{2}\) :

Solutal stratification Biot number

\(\tilde{C}_{\text{w}}\) :

Wall concentration

\(\tilde{N}_{\text{w}}\) :

Wall microorganisms

\(G\left( \zeta \right)\) :

Azimuthal velocity

\(\nu\) :

Kinematic viscosity

\(\varOmega\) :

Angular velocity

\(\sigma^{ * }\) :

Electrical conductivity

\(\tau\) :

Thermal diffusion coefficient

\(\beta_{1}\) :

Relaxation to time

\(\beta^{*}\) :

Volume fraction constant

\(\rho_{\text{m}}\) :

Microorganisms density

\(k^{*}\) :

Roseland mean spectral coefficient

\(\omega_{1}\) :

Relaxation to time parameter

\(\delta_{0}\) :

Heat generation/absorption parameter

\(\delta_{1}\) :

Thermal stratified parameter

\(\delta_{3}\) :

Microorganism stratified parameter

\(\lambda\) :

Rotation parameter

\(\theta\) :

Temperature distribution

\(\varpi\) :

Motile microorganism differences parameter

\(w_{0}\) :

Mass flux velocity

\(g^{*}\) :

Gravity

\(\sigma^{**}\) :

Stefan–Boltzmann

\(\beta_{2}\) :

Retardation to time

\(\rho_{\text{f}}\) :

Nanofluid density

\(\rho_{\text{p}}\) :

Nanoparticles density

\(\sigma\) :

Chemical reaction parameter

\(\omega_{2}\) :

Retardation to time parameter

\(\delta\) :

Mixed convection parameter

\(\delta_{2}\) :

Solutal stratified parameter

\(\omega\) :

Temperature difference parameter

\(\gamma\) :

Stretching/shrinking parameter

\(\phi\) :

Volumetric concentration

References

  1. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135:551–63.

    Article  CAS  Google Scholar 

  2. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135:1643–54.

    Article  CAS  Google Scholar 

  3. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105:73.

    Article  Google Scholar 

  4. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2020;140:879–90.

    Article  CAS  Google Scholar 

  5. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  6. Bhatti MM, Khalique CM, Bég TA, Bég OA, Kadir A. Numerical study of slip and radiative effects on magnetic Fe3O4–water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Mod Phys Lett B. 2020;34:2050026.

    Article  CAS  Google Scholar 

  7. Zhang L, Arain MB, Bhatti MM, Zeehan A, Hal-Sulami H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl Math Mech-Engl Ed. 2020;41:637–54.

    Article  CAS  Google Scholar 

  8. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States), 1995;1.

  9. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  10. Turkyilmazoglu M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comp Methods Prog Biomed. 2020;187:105171.

    Article  Google Scholar 

  11. Ellahi R, Hussain F, Abbas SA, Sarafraz MM, Goodarzi M, Shadloo MS. Study of two-phase Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip. Inventions. 2020;5:6.

    Article  Google Scholar 

  12. Hiemenz K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J. 1911;326:321–4.

    Google Scholar 

  13. Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S. Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method. Int J Numer Methods Heat Fluid Flow. 2015;25:665–84.

    Article  Google Scholar 

  14. Saif RS, Hayat T, Ellahi R, Muhammad T, Alsaedi A. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness. Results Phys. 2017;7:2821–30.

    Article  Google Scholar 

  15. Hayat T, Saif RS, Ellahi R, Muhammad T, Alsaedi A. Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness. Int J Therm Sci. 2018;132:344–54.

    Article  Google Scholar 

  16. Oldroyd JG. On the formulation of rheological equations of state. Proc R Soc Lond Ser A Math Phys Sci. 1950;200:523–41.

    CAS  Google Scholar 

  17. Irfan M, Khan M, Gulzar MM, Khan WA. Chemically reactive and nonlinear radiative heat flux in mixed convection flow of Oldroyd-B nanofluid. Appl Nanosci. 2019;1:1–9.

    Google Scholar 

  18. Khan SU, Rauf A, Shehzad SA, Abbas Z, Javed T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys A. 2019;527:121179.

  19. Abbas SZ, Khan WA, Waqas M, Irfan M, Asghar Z. Exploring the features for flow of Oldroyd-B liquid film subjected to rotating disk with homogeneous/heterogeneous processes. Comp Methods Prog Biomed. 2020;9:105323.

    Article  Google Scholar 

  20. Hafeez A, Khan M, Ahmed J. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Comp Methods Prog Biomed. 2020;27:105342.

    Article  Google Scholar 

  21. Anwar T, Khan I, Kumam P, Watthayu W. Impacts of thermal radiation and heat consumption/generation on unsteady MHD convection flow of an Oldroyd-B fluid with ramped velocity and temperature in a generalized Darcy medium. Mathematics. 2020;8:130.

    Article  Google Scholar 

  22. Ye Z. Global regularity of the high-dimensional Oldroyd-B model in the corotational case. J Math Anal Appl. 2020;10:123867.

    Article  Google Scholar 

  23. Waqas H, Khan SU, Imran M, Bhatti MM. Thermally developed Falkner-Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model. Phys Scr. 2019;94:115304.

    Article  CAS  Google Scholar 

  24. Waqas H, Khan SU, Hassan M, Bhatti MM, Imran M. Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J Mol Liq. 2019;291:111231.

    Article  CAS  Google Scholar 

  25. Waqas H, Khan SU, Tlili I, Awais M, Shadloo MS. Significance of bioconvective and thermally dissipation flow of viscoelastic nanoparticles with activation energy features: novel biofuels significance. Symmetry. 2020;12:214.

    Article  CAS  Google Scholar 

  26. Balla CS, Alluguvelli R, Naikoti K, Makinde OD. Effect of chemical reaction on bioconvective flow in oxytactic microorganisms suspended porous cavity. J Appl Comput Mech. 2020;6:653–64.

    Google Scholar 

  27. Kazemian Y, Rashidi S, Esfahani JA, Karimi N. Simulation of conjugate radiation–forced convection heat transfer in a porous medium using the lattice Boltzmann method. Meccanica. 2019;54:505–24.

    Article  Google Scholar 

  28. Hosseini R, Rashidi S, Esfahani JA. A lattice Boltzmann method to simulate combined radiation–force convection heat transfer mode. J Braz Soc Mech Sci Eng. 2017;39:3695–706.

    Article  CAS  Google Scholar 

  29. Kazemian Y, Esfahani JA, Rashidi S. Enhancing the convergence speed of numerical solution using the flow rate control in a novel lattice Boltzmann method. Europ Phys J Plus. 2018;133:555.

    Article  Google Scholar 

  30. Javadi P, Rashidi S, Esfahani JA. Effects of rib shapes on the entropy generation in a ribbed duct. J Thermophys Heat Transf. 2018;32:691–701.

    Article  CAS  Google Scholar 

  31. Tighchi HA, Sobhani M, Esfahani JA. Lattice Boltzmann simulation of combined volumetric radiation/natural convection to consider optical properties of nanoparticles. Rad Phys Chem. 2019;159:238–51.

    Article  CAS  Google Scholar 

  32. Sobhani M, Tighchi HA, Esfahani JA. Attenuation of radiative heat transfer in natural convection from a heated plate by scattering properties of Al2O3 nanofluid: LBM simulation. Int J Mech Sci. 2019;156:250–60.

    Article  Google Scholar 

  33. Sobhani M, Tighchi HA, Esfahani JA. Taguchi optimization of combined radiation/natural convection of participating medium in a cavity with a horizontal fin using LBM. Phys A. 2018;509:1062–79.

    Article  CAS  Google Scholar 

  34. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, Ahmad Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138:3007–21.

    Article  CAS  Google Scholar 

  35. Muhammad T, Waqas H, Khan SA, Ellahi R, Sait SM. Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09459-4.

    Article  Google Scholar 

  36. Muhammad T, Alamri SZ, Waqas H, Habib D, Ellahi R. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09580-4.

    Article  Google Scholar 

  37. Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2020;140:1277–91.

    Article  CAS  Google Scholar 

  38. Riaz A, Khan SUD, Zeeshan A, Khan SU, Hassan M, Muhammad T. Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09454-9.

    Article  Google Scholar 

  39. Majeed A, Zeeshan A, Bhatti MM, Ellahi R. Heat transfer in magnetite (Fe3O4) nanoparticles suspended with conventional fluids: Refrigerant-134a (C2H2F4), kerosene (C10H22) and water (H2O) under the impact of dipole. Heat Transf Res. 2020;51:217–32.

    Article  Google Scholar 

  40. Ellahi R, Sait SM, Shehzad N, Ayaz Z. A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Methods Heat Fluid Flow. 2019;30:834–54.

    Article  Google Scholar 

  41. Karman VA. Uberlaminare und urbulente Reibung, zeitschrift fur Angew Math. Mech ZAMM. 1921;4:233–52.

    Article  Google Scholar 

  42. Turkyilmazoglu M. Nanofluid flow and heat transfer due to a rotating disk. Comp Fluids. 2014;94:139–46.

    Article  CAS  Google Scholar 

  43. Bachok N, Ishak A, Pop I. Flow and heat transfer over a rotating porous disk in a nanofluid. Physica B Condens Matter. 2011;406:1767–72.

    Article  CAS  Google Scholar 

  44. Hafeez A, Khan M, Ahmed J. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Comp Methods Prog Biomed. 2020;191:105342.

    Article  Google Scholar 

Download references

Acknowledgements

Authors S. M. Sait and R. Ellahi acknowledge King Fahd University of Petroleum & Minerals (Grand No. ORCP), Dhahran, Saudi Arabia, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ellahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, H., Imran, M., Muhammad, T. et al. Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J Therm Anal Calorim 145, 523–539 (2021). https://doi.org/10.1007/s10973-020-09728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09728-2

Keywords

Navigation