Skip to main content
Log in

Effect of water/binder ratio and temperature on the hydration heat and properties of ternary blended cement containing slag and iron tailing powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of water/binder ratio and temperature on hydration heat and properties of ternary blended cement containing slag and iron tailing powder were investigated. The hydration heat was determined by isothermal calorimeter. The Ca(OH)2 content of ternary hardened paste was obtained based on the thermogravimetric results. The microstructure and compressive strength development were also analyzed. Partial substitution of iron tailing powder by slag reduces the early-stage exothermic rate, but increases the cumulative hydration heat at later-stage hydration. The high temperature dramatically increases exothermic rate and cumulative hydration heat, especially for ternary blended cement with large amount of slag. The addition of high quantity of iron tailing powder negatively affects properties development of blended cement. But partial substitution of iron tailing powder by slag increases bound water content, reduces Ca(OH)2 content, refines pore structure, densifies structure and finally improves compressive strength, especially at low water/binder ratio. The early high temperature curing results in poor properties of blended cement containing high quantity of iron tailing powder, but it is advantageous to the properties development of ternary blended cement containing slag and iron tailing powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41:1244–56.

    Article  CAS  Google Scholar 

  2. Han F, Zhang Z, Liu J, et al. Effect of water-to-binder ratio on the hydration kinetics of composite binder containing slag or fly ash. J Therm Anal Calorim. 2017;128:855–65.

    Article  CAS  Google Scholar 

  3. Jiang L, Li C, Wang C, et al. Utilization of flue gas desulfurization gypsum as an activation agent for high-volume slag concrete. J Clean Prod. 2018;205:589–98.

    Article  CAS  Google Scholar 

  4. Shumuye ED, Zhao J, Wang Z. Effect of fire exposure on physico-mechanical and microstructural properties of concrete containing high volume slag cement. Constr Build Mater. 2019;213:447–58.

    Article  CAS  Google Scholar 

  5. Woo HM, Kim CY, Yeon JH. Heat of hydration and mechanical properties of mass concrete with high-volume GGBFS replacement. J Therm Anal Calorim. 2018;132:599–609.

    Article  CAS  Google Scholar 

  6. Han F, Zhang Z. Hydration, mechanical properties and durability of high-strength concrete under different curing conditions. J Therm Anal Calorim. 2018;132:823–34.

    Article  CAS  Google Scholar 

  7. Adu-Amankwah S, Zajac M, Stabler C, et al. Influence of limestone on the hydration of ternary slag cements. Cem Concr Res. 2017;100:96–109.

    Article  CAS  Google Scholar 

  8. Tydlitát V, Matas T, Cerný R. Effect of w/c and temperature on the early-stage hydration heat development in Portland–limestone cement. Constr Build Mater. 2014;50:140–7.

    Article  Google Scholar 

  9. Yan P, Mi G, Wang Q. A comparison of early hydration properties of cement–steel slag binder and cement–limestone powder binder. J Therm Anal Calorim. 2014;115:193–200.

    Article  CAS  Google Scholar 

  10. Rahhal V, Bonavetti V, Trusilewicz L, et al. Role of the filler on Portland cement hydration at early ages. Constr Build Mater. 2012;27:82–90.

    Article  Google Scholar 

  11. Tydlitát V, Zákoutský J, Volfová P, et al. Hydration heat development in blended cements containing fine-ground ceramics. Thermochim Acta. 2012;543:125–9.

    Article  Google Scholar 

  12. Berodier E, Scrivener K. Understanding the filler effect on the nucleation and growth of C–S–H. J Am Ceram Soc. 2014;97:3764–73.

    Article  CAS  Google Scholar 

  13. Jiang C, Guo W, Chen H, et al. Effect of filler type and content on mechanical properties and microstructure of sand concrete made with superfine waste sand. Constr Build Mater. 2018;192:442–9.

    Article  CAS  Google Scholar 

  14. Ghalehnovi M, Roshan N, Hakak E, et al. Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. J Clean Prod. 2019;240:118213.

    Article  CAS  Google Scholar 

  15. Li C, Sun H, Yi Z, et al. Innovative methodology for comprehensive utilization of iron ore tailings Part 2: the residues after iron recovery from iron ore tailings to prepare cementitious materials. J Hazard Mater. 2010;174:78–83.

    Article  CAS  Google Scholar 

  16. Han F, Li L, Shao S, et al. Early-age hydration characteristics of composite binder containing iron tailing powder. Powder Technol. 2017;315:322–31.

    Article  CAS  Google Scholar 

  17. Cheng Y, Huang F, Li W, et al. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr Build Mater. 2016;118:164–70.

    Article  CAS  Google Scholar 

  18. Han F, Shao S, Liu J, et al. Properties of steam-cured precast concrete containing iron tailing powder. Powder Technol. 2019;345:292–9.

    Article  CAS  Google Scholar 

  19. Xiong C, Li W, Jiang L, et al. Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes. Constr Build Mater. 2017;150:66–76.

    Article  CAS  Google Scholar 

  20. Duan P, Yan C, Zhou W, et al. Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Constr Build Mater. 2016;118:76–88.

    Article  CAS  Google Scholar 

  21. De Weerdt K, Ben Haha M, Le Saout G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41:279–91.

    Article  Google Scholar 

  22. Han F, Liu J, Yan P. Comparative study of reaction degree of mineral admixture by selective dissolution and image analysis. Constr Build Mater. 2016;114:946–55.

    Article  CAS  Google Scholar 

  23. Kocaba V, Gallucci E, Scrivener KL. Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res. 2012;42:511–25.

    Article  CAS  Google Scholar 

  24. Kolani B, Buffo-Lacarrière L, Sellier A, et al. Hydration of slag-blended cements. Cem Concr Compos. 2012;34:1009–18.

    Article  CAS  Google Scholar 

  25. Wang Q, Shi M, Wang D. Contributions of fly ash and ground granulated blast-furnace slag to the early hydration heat of composite binder at different curing temperatures. Adv Cem Res. 2016;28:320–7.

    Article  Google Scholar 

  26. Schöler A, Lothenbach B, Winnefeld F, et al. Early hydration of SCM-blended Portland cements: a pore solution and isothermal calorimetry study. Cem Concr Res. 2017;93:71–82.

    Article  Google Scholar 

  27. Taylor R, Richardson IG, Brydson RMD. Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem Concr Res. 2010;40:971–83.

    Article  CAS  Google Scholar 

  28. Gallucci E, Zhang X, Scrivener KL. Effect of temperature on the microstructure of calcium silicate hydrate (C–S–H). Cem Concr Res. 2013;53:185–95.

    Article  CAS  Google Scholar 

  29. Wang Y, An M, Yu Z, et al. Impacts of various factors on the rehydration of cement-based materials with a low water-binder ratio using mathematical models. Constr Build Mater. 2016;125:160–7.

    Article  CAS  Google Scholar 

  30. Han F, Wang Q, Liu M, et al. Early hydration properties of composite binder containing limestone powder with different finenesses. J Therm Anal Calorim. 2016;123:1141–51.

    Article  CAS  Google Scholar 

  31. Monteiro PJM, Geng G, Marchon D, et al. Advances in characterizing and understanding the microstructure of cementitious materials. Cem Concr Res. 2019;124:105806.

    Article  CAS  Google Scholar 

  32. Bourchy A, Barnes L, Bessette L, et al. Optimization of concrete mix design to account for strength and hydration heat in massive concrete structures. Cem Concr Compos. 2019;103:233–41.

    Article  CAS  Google Scholar 

  33. Maruyama I, Lura P. Properties of early-age concrete relevant to cracking in massive concrete. Cem Concr Res. 2019;123:105770.

    Article  CAS  Google Scholar 

  34. Wang Q, Huang Z, Wang D. Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete. J Therm Anal Calorim. 2018;131:873–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the National Natural Science Foundation of China (Nos. 51908033 and 51578039), Beijing Natural Science Foundation (No. 8204067), Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology (No. BSBE2018-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanghui Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Song, S., Liu, J. et al. Effect of water/binder ratio and temperature on the hydration heat and properties of ternary blended cement containing slag and iron tailing powder. J Therm Anal Calorim 144, 1115–1128 (2021). https://doi.org/10.1007/s10973-020-09687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09687-8

Keywords

Navigation