Skip to main content
Log in

Investigation of reconstructed three-dimensional active infrared thermography of buried defects: multiphysics finite elements modelling investigation with initial experimental validation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we use a Multiphysics approach in COMSOL™ Platform to develop and validate a finite element model that simulates thermal images obtained in active thermography mode. This approach allows variation in material properties, the selection of active thermography methods such as Flash, Pulse Phase & Lock-in techniques, source wavelength, depth and dimensions of defect. We then take experimental thermography images of a defect embedded into a PLA block to compare with simulated images generated by the Multiphysics model. Our work shows the feasibility of real-time three-dimensional (3D) active infrared thermography (IRT) of buried defects. Such imaging can be hugely beneficial not only in quality control and process optimisation in additive manufacturing but also determination of shape and outline of tumours and plaques in medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tofail SAM, Mani A, Bauer J, Silien C. In situ, real-time infrared (IR) imaging for metrology in advanced manufacturing. Adv Eng Mater. 2018;20:1800061–9.

    Article  Google Scholar 

  2. Galla S, Konczakowska A. Application of infrared thermography to non-contact testing of varistors Metrol. Meas Syst. 2013;20:677–88.

    Article  Google Scholar 

  3. Akhloufi MA, Guyon Y, Castanedo C-I, Bendada A. Three-dimensional thermography for non-destructive testing and evaluation. Quant Infrared Thermogr J. 2017;14:79–106.

    Article  Google Scholar 

  4. Bauer J, O’Mahony C, Chovan D, Mulcahy J, Silien C, Tofail SAM. Thermal effects of mobile phones on human auricle region. J Therm Biol. 2019;79:56–68.

    Article  Google Scholar 

  5. Kaczmarek M, Nowakowski A. Active IR-thermal imaging in medicine. J Nondestruct Eval. 2016;35:19.

    Article  Google Scholar 

  6. Cholewka A, Kasprzyk T, Satnek A, Sieorn-Stołtny K, Drzazga Z. May thermal imaging be useful in cyclist endurance tests? J Therm Anal Calorim. 2016;123:1973–9.

    Article  CAS  Google Scholar 

  7. Bauer J, Grabarek M, Migasiewicz A, Podbielska H. Non-contact thermal imaging as potential tool for personalized diagnosis and prevention of cellulite. J Therm Anal Calorim. 2018;133(1):571–8.

    Article  CAS  Google Scholar 

  8. Bauer J, Górecki I, Kohyt M, Migasiewicz A, Podbielska H. The influence of smartphones’ operation modes on the superficial temperature distribution in the human auricle region. J Therm Anal Calorim. 2018;133(1):559–69.

    Article  CAS  Google Scholar 

  9. Ciampa F, Mahmodddi P, Pinto F, Meo M. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors. 2018;18(2):609.

    Article  Google Scholar 

  10. Dashtizadeh Z, Ali A, Khalina A. A review of non-destructive thermography techniques toward structural integrity of bio-composites. Key Eng Mater. 2011;471–2:103–8.

    Article  Google Scholar 

  11. Tarin M, Rotolante R. NDT in composite materials with flash. transient and lock-in thermography, Flir Trchnical Series, Application Note for Research and Science. 2011. https://www.emitec-industrial.ch/media/pdf/NDT_in_Composite_Materials_with_Flash_Transient_and_Lockin_Thermography_Emitec_FLIR.pdf.. Accessed 02 Sept 2019.

  12. Doshvarpassand S, Wu C, Wang X. An overwiew of corrosion defect cvhasraterizawtion using active infra-red thermography. Infrared Phys Technol. 2019;96:366–89.

    Article  CAS  Google Scholar 

  13. Dutta S, Dreschsler K, Kupke M, Schuster A. Automated single view 3D texture mapping and defect locali-sation of thermography measurements on large components utilising and industrial robot and a laser system. QIRT. 2018. https://doi.org/10.21611/qirt.2018.074.

    Article  Google Scholar 

  14. Elhassnaoui A, Sahnoun S. A three-dimensional reconstriuction algorithm for pulsed thermography. J Mater Environ Sci. 2014;5(4):983–8.

    Google Scholar 

  15. Shepard S, Lhota JR, Ahmed T. Flash thermography contrast model based on IR camera noise characteristics. Nondestruct Test Eval. 2007;20:113–26.

    Article  Google Scholar 

  16. Cannas B, Carcangiu S, Concu G, Trulli N. Modeling of active infrared thermography for defect detection in concrete structures. Proc. 2012 COMSOL Conference in Milan. 2012. https://www.comsol.de/paper/download/152465/carcangiu_paper.pdf. Accessed 02 Sept 2019.

  17. Skala L, Lipic T, Sovic I, Gjenero L, Grubisic I. 4D thermal imaging system for medical applications. Period Biol. 2011;113:407–16.

    Google Scholar 

  18. Chernov G, Chernov V, Davila-Peralta C, Rodriquez-Cavajal R. 3D dynamic thermography system for bio-medical applications. Proc Quant Infrared Thermogr. 2016. https://doi.org/10.21611/girt.2016.020.

    Article  Google Scholar 

  19. Grubisic I, Gjenero L, Lipic T, Sovic I, Skala T. Active 3D scanning based 3D thermography system and medical applications, Proc. 34 Int Convention MIPRO. 2011; p. 269–73.

  20. Susa M, Ibarra-Castanedo C, Maldague X, Svaic S, Boras I. Pulse thermography applied on a complex structure sample: comparison and analysis of numerical and experimental results. In: Proc. IV Conferencia Panamericana de END, Buenos Aires—October 2007, https://pdfs.semanticscholar.org/7d78/997e449ddaccda16439e782a73cf179a4e43.pdf. Accessed 02 Sept 2019.

  21. Burgholzer P, Thor M, Gruber J, Mayr G. Three-dimensional thermographic imaging using a virtual wave concept. J Appl Phys. 2017;121:105102–7.

    Article  Google Scholar 

  22. Sham FC, Huang YH, Liu L, Chen YS, Hung YY, Lo TY. Computerized tomography technique for reconstruction of obstructed temperature field in infrared thermography. Infrared Phys Technol. 2010;53:1–9.

    Article  CAS  Google Scholar 

  23. Hartmann MH. High molecular weight polylactic acid polymers BT. In: Kaplan DL, editor. Biopolymers from renewable resources. Berlin: Springer; 1998. p. 367–411.

    Chapter  Google Scholar 

  24. Conn RE, et al. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol. 1995;33:273–83.

    Article  CAS  Google Scholar 

  25. Davachi SM, Kaffashi B. Polylactic acid in medicine. Polym Plast Technol Eng. 2015;54:944–67.

    Article  CAS  Google Scholar 

  26. Rajpurohit S, Dave H. Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Adv Manuf. 2018;6:430–41.

    Article  CAS  Google Scholar 

  27. Hedayatrasa S, Segers J, Calderon Tellez JA, Van Paepegem W, Kersemans M. On efficient FE simulation of pulse infrared thermography for inspection of CFRPs. In: Proc. 14th Quantitative Infrared Thermography, 2018; p. 748–56.

Download references

Acknowledgements

The authors acknowledge European Commission Erasmus + bilateral exchange programme between Wroclaw University of Science and Technology, Poland and University of Limerick, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joanna Bauer or Syed A. M. Tofail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Mahony, C., Mani, A., Markham, S. et al. Investigation of reconstructed three-dimensional active infrared thermography of buried defects: multiphysics finite elements modelling investigation with initial experimental validation. J Therm Anal Calorim 142, 473–481 (2020). https://doi.org/10.1007/s10973-020-09678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09678-9

Keywords

Navigation