Skip to main content
Log in

Synthesis of highly stable nanofluids including polyvinyl alcohol-treated graphene oxide for improved heat dissipation in a tubular heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer rate and amount of pressure drop for highly stabled nanofluids loaded with polyvinyl alcohol-treated graphene oxide (PVA-GO) were experimentally investigated in a horizontal copper duct with the uniform heat flux on outer surface of test section. To meet those goals, we produced GO through a wet-based exfoliation method and followed by functionalization of GO with PVA. As a phase of study, some nanofluids including PVA-GO with different concentration were prepared and thermo-physical and rheological properties were experimentally obtained. The thermo-physical attributes such as thermal conductivity, viscosity and density of the synthesized samples with various PVA-GO concentrations (0.025, 0.05, and 0.1 mass%) were experimentally investigated at the first phase of this article. Possessing the thermo-physical properties open a precise gate to measure the heat transfer rate (h & Nu) and frication factor for water/PVA-GO nanofluids and finally compared with the working fluid (water). As the second phase of study, influence of parameters such as concentration of PVA-GO and the flow rate on heat transfer parameters such as Nu, friction factor, and performance index were investigated. Overall, processing heat transfer systems with highly conductive water/PVA-GO nanofluids even at low concentrations results in higher heat transfer rate and overall performance of system/cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J g1 k1)

D :

Diameter (m)

h :

Heat transfer coefficient (W m2 k1)

k :

Thermal conductivity (W m1 k1)

Nu:

Nusselt number

q :

Heat flux (W m2)

Q :

Heat transfer rate (W)

Re:

Reynolds number

U ave :

Average velocity (m s1)

f :

Friction factor

m o :

Mass flow rate (kg s1)

L :

Channel length (m)

L x/L :

Ratio of the length of x to the channel length

T sx :

The wall temperature of the fluid at the axial distance x

T bx :

The bulk temperature of the fluid at the axial distance x

A w :

Area of the downstream wall (m2)

PI:

Performance index

RTD:

Resistance temperature detector

μ :

Viscosity (Pa s)

ρ :

Density (kg m3)

ΔP :

Pressure drop (Pa)

nf:

Nanofluid

bf:

Base fluid

ave:

Average

s:

Tube wall

In:

Inlet

out:

Outlet

References

  1. Kralova I, Sjöblom J. Biofuels-renewable energy sources: a review. J Dispersion Sci Technol. 2010;31(3):409–25. https://doi.org/10.1080/01932690903119674.

    Article  CAS  Google Scholar 

  2. Graillat C, Lepais-Masmejean M, Pichot C. Stabilization optimization of aqueous monomer solutions in oil emulsions using the cohesive energy ratio concept. J Dispersion Sci Technol. 1990;11(5):455–77. https://doi.org/10.1080/01932699008943271.

    Article  CAS  Google Scholar 

  3. Shanbedi M, Heris SZ, Amiri A, Adyani S, Alizadeh M, Baniadam M. Optimization of the thermal efficiency of a two-phase closed thermosyphon using active learning on the human algorithm interaction. Numer Heat Transfer Part A. 2014;66(8):947–62. https://doi.org/10.1080/10407782.2014.892388.

    Article  Google Scholar 

  4. Shanbedi M, Zeinali Heris S, Maskooki A, Eshghi H. Statistical analysis of laminar convective heat transfer of MWCNT-deionized water nanofluid using the response surface methodology. Numer Heat Transfer. 2015;68(4):454–69. https://doi.org/10.1080/10407782.2014.986003.

    Article  CAS  Google Scholar 

  5. Qiu L, Ouyang Y, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy. 2019;140:513–38. https://doi.org/10.1016/j.renene.2019.03.088.

    Article  CAS  Google Scholar 

  6. Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D et al. A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys Rep. 2020;843:1–81.

    Article  CAS  Google Scholar 

  7. Sivasamy P, Devaraju A, Harikrishnan S. Review on heat transfer enhancement of phase change materials (PCMs). Mater Today. 2018;5(6):14423–31.

    CAS  Google Scholar 

  8. Amiri A, Shanbedi M, Ahmadi G, Rozali S. Transformer oils-based graphene quantum dots nanofluid as a new generation of highly conductive and stable coolant. Int Commun Heat Mass Transfer. 2017;83:40–7.

    Article  CAS  Google Scholar 

  9. Amiri A, Shanbedi M, Dashti H. Thermophysical and rheological properties of water-based graphene quantum dots nanofluids. J Taiwan Inst Chem Eng. 2017;76:132–40.

    Article  CAS  Google Scholar 

  10. Yu W, Xie H, Wang X. Enhanced thermal conductivity of liquid paraffin based nanofluids containing copper nanoparticles. J Dispersion Sci Technol. 2011;32(7):948–51. https://doi.org/10.1080/01932691.2010.488503.

    Article  CAS  Google Scholar 

  11. Solanki JN, Murthy ZVP. Preparation of silver nanofluids with high electrical conductivity. J Dispersion Sci Technol. 2011;32(5):724–30. https://doi.org/10.1080/01932691.2010.480863.

    Article  CAS  Google Scholar 

  12. Amiri A, Arzani HK, Kazi SN, Chew BT, Badarudin A. Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water–ethylene glycol nanofluids. Int J Heat Mass Tran. 2016;97:538–46.

    Article  CAS  Google Scholar 

  13. Amiri A, Shanbedi M, AliAkbarzade MJ. The specific heat capacity, effective thermal conductivity, density, and viscosity of coolants containing carboxylic acid functionalized multi-walled carbon nanotubes. J Dispersion Sci Technol. 2016;37(7):949–55. https://doi.org/10.1080/01932691.2015.1074588.

    Article  CAS  Google Scholar 

  14. Mohd Zubir MN, Badarudin A, Kazi SN, Nay Ming H, Sadri R, Amiri A. Investigation on the use of graphene oxide as novel surfactant for stabilizing carbon based materials. J Dispersion Sci Technol. 2016;37(10):1395–407. https://doi.org/10.1080/01932691.2015.1108850.

    Article  CAS  Google Scholar 

  15. Amiri A, Shanbedi M, Ahmadi G, Rozali S. Transformer oils-based graphene quantum dots nanofluid as a new generation of highly conductive and stable coolant. Intl Commun Heat Mass Transf. 2017;83:40–7. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.011.

    Article  CAS  Google Scholar 

  16. Amiri A, Kazi SN, Shanbedi M, Mohd Zubir MN, Yarmand H, Chew BT. Transformer oil based multi-walled carbon nanotube-hexylamine coolant with optimized electrical, thermal and rheological enhancements. RSC Adv. 2015;5(130):107222–36. https://doi.org/10.1039/C5RA17687E.

    Article  CAS  Google Scholar 

  17. Shanbedi M, Heris SZ, Amiri A, Hosseinipour E, Eshghi H, Kazi S. Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manage. 2015;105:1366–76.

    Article  CAS  Google Scholar 

  18. Amiri A, Shanbedi M, Chew B, Kazi S, Solangi K. Toward improved engine performance with crumpled nitrogen-doped graphene based water–ethylene glycol coolant. Chem Eng J. 2016;289:583–95.

    Article  CAS  Google Scholar 

  19. Heris SZ, Shokrgozar M, Poorpharhang S, Shanbedi M, Noie SH. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant. J Dispersion Sci Technol. 2014;35(5):677–84. https://doi.org/10.1080/01932691.2013.805301.

    Article  CAS  Google Scholar 

  20. Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60. https://doi.org/10.1007/s10973-014-4048-0.

    Article  CAS  Google Scholar 

  21. Solangi K, Kazi S, Luhur M, Badarudin A, Amiri A, Sadri R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.

    Article  CAS  Google Scholar 

  22. Rayatzadeh HR, Saffar-Avval M, Mansourkiaei M, Abbassi A. Effects of continuous sonication on laminar convective heat transfer inside a tube using water–TiO2 nanofluid. Exp Thermal Fluid Sci. 2013;48:8–14. https://doi.org/10.1016/j.expthermflusci.2013.01.016.

    Article  CAS  Google Scholar 

  23. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28(2):211–9. https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006.

    Article  CAS  Google Scholar 

  24. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, et al. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers Manage. 2016;114:38–49. https://doi.org/10.1016/j.enconman.2016.02.008.

    Article  CAS  Google Scholar 

  25. Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transfer. 2016;77:15–211. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.010.

    Article  CAS  Google Scholar 

  26. Eastman JA, Choi S, Li S, Yu W, Thompson L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  27. Haddad Z, Oztop HF, Abu-Nada E, Mataoui A. A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2012;16(7):5363–78.

    Article  CAS  Google Scholar 

  28. Amiri A, Ahmadi G, Shanbedi M, Etemadi M, Zubir MNM, Chew B, et al. Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids. RSC Adv. 2016;6(107):105508–277.

    Article  CAS  Google Scholar 

  29. Amiri A, Shanbedi M, Rafieerad A, Rashidi MM, Zaharinie T, Zubir MNM, et al. Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation. J Taiwan Inst Chem Eng. 2016. https://doi.org/10.1016/j.jtice.2016.12.009.

    Article  Google Scholar 

  30. King JA, Klimek DR, Miskioglu I, Odegard GM. Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci. 2013;128(6):4217–23. https://doi.org/10.1002/app.38645.

    Article  CAS  Google Scholar 

  31. Shazali SS, Amiri A, Mohd Zubir MN, Rozali S, Zabri MZ, Mohd Sabri MF, et al. Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents. Mater Chem Phys. 2018;206:94–102. https://doi.org/10.1016/j.matchemphys.2017.12.008.

    Article  CAS  Google Scholar 

  32. Amiri A, Naraghi M, Ahmadi G, Soleymaniha M, Shanbedi M. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem. 2018;8:40–71. https://doi.org/10.1016/j.flatc.2018.03.004.

    Article  CAS  Google Scholar 

  33. Amiri A, Ahmadi G, Shanbedi M, Savari M, Kazi S, Chew B. Microwave-assisted synthesis of highly-crumpled, few-layered graphene and nitrogen-doped graphene for use as high-performance electrodes in capacitive deionization. Sci Rep. 2015. https://doi.org/10.1038/srep17503.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Kazi S, Chew B, et al. Mass production of highly-porous graphene for high-performance supercapacitors. Sci Rep. 2016;6:32686.

    Article  CAS  Google Scholar 

  35. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des. 2015;66:142–9. https://doi.org/10.1016/j.matdes.2014.10.047.

    Article  CAS  Google Scholar 

  36. Strankowski M, Piszczyk L, Kosmela P, Korzeniewski P. Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide. Pol J Chem Technol. 2015;17(4):88–94. https://doi.org/10.1515/pjct-2015-0073.

    Article  CAS  Google Scholar 

  37. Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116(5):3369–75.

    Article  CAS  Google Scholar 

  38. Akhavan-Zanjani H, Saffar-Avval M, Mansourkiaei M, Ahadi M, Sharif F. Turbulent convective heat transfer and pressure drop of graphene-water nanofluid flowing inside a horizontal circular tube. J Dispersion Sci Technol. 2014;35(9):1230–40. https://doi.org/10.1080/01932691.2013.834423.

    Article  CAS  Google Scholar 

  39. Sarsam WS, Amiri A, Kazi SN, Badarudin A. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers Manage. 2016;116:101–11. https://doi.org/10.1016/j.enconman.2016.02.082.

    Article  CAS  Google Scholar 

  40. Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, et al. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon. 2019;141:497–505.

    Article  CAS  Google Scholar 

  41. Chen J, Yao B, Li C, Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–9.

    Article  CAS  Google Scholar 

  42. Teng K, Amiri A, Kazi S, Bakar M, Chew B. Fouling mitigation on heat exchanger surfaces by EDTA-treated MWCNT-based water nanofluids. J Taiwan Inst Chem Eng. 2016;60:445–52.

    Article  CAS  Google Scholar 

  43. Teng K, Amiri A, Kazi S, Bakar M, Chew B, Al-Shammaa A, et al. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids. Appl Thermal Eng. 2017;110:495–503.

    Article  CAS  Google Scholar 

  44. Amiri A, Zubir MNM, Dimiev AM, Teng KH, Shanbedi M, Kazi SN, et al. Facile, environmentally friendly, cost effective and scalable production of few-layered graphene. Chem Eng J. 2017;326:1105–15. https://doi.org/10.1016/j.cej.2017.06.046.

    Article  CAS  Google Scholar 

  45. Amiri A, Maghrebi M, Baniadam M, Heris SZ. One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl Surf Sci. 2011;257(23):10261–6.

    Article  CAS  Google Scholar 

  46. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew B, Kazi S, et al. Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manage. 2015;92:322–30.

    Article  CAS  Google Scholar 

  47. Aravind SSJ, Baskar P, Baby TT, Sabareesh RK, Das S, Ramaprabhu S. Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. J Phys Chem C. 2011;115(34):16737–44. https://doi.org/10.1021/jp201672p.

    Article  CAS  Google Scholar 

  48. Samira P, Saeed Z, Motahare S, Mostafa K. Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator. Korean J Chem Eng. 2014. https://doi.org/10.1007/s11814-014-0244-7.

    Article  Google Scholar 

  49. Sarsam WS, Amiri A, Zubir MNM, Yarmand H, Kazi SN, Badarudin A. Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas. Colloids Surf A. 2016;500:17–311. https://doi.org/10.1016/j.colsurfa.2016.04.016.

    Article  CAS  Google Scholar 

  50. Keblinski P, Phillpot S, Choi S, Eastman J. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  51. Eastman JA, Phillpot S, Choi S, Keblinski P. Thermal transport in nanofluids 1. Annu Rev Mater Res. 2004;34:219–46.

    Article  CAS  Google Scholar 

  52. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126(3):1455–62. https://doi.org/10.1007/s10973-016-5548-x.

    Article  CAS  Google Scholar 

  53. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67. https://doi.org/10.1007/s10973-017-6213-8.

    Article  CAS  Google Scholar 

  54. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35. https://doi.org/10.1007/s10973-016-5436-4.

    Article  CAS  Google Scholar 

  55. Jbeili M, Wang G, Zhang J. Evaluation of thermal and power performances of nanofluid flows through square in-line cylinder arrays. J Therm Anal Calorim. 2017;129(3):1923–34. https://doi.org/10.1007/s10973-017-6363-8.

    Article  CAS  Google Scholar 

  56. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13. https://doi.org/10.1007/s10973-014-4197-1.

    Article  CAS  Google Scholar 

  57. Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan W-M. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122(2):863–84. https://doi.org/10.1007/s10973-015-4820-9.

    Article  CAS  Google Scholar 

  58. Rajesh Kumar B, Shemeena Basheer N, Jacob S, Kurian A, George SD. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm Anal Calorim. 2015;119(1):453–60. https://doi.org/10.1007/s10973-014-4208-2.

    Article  CAS  Google Scholar 

  59. Leena M, Srinivasan S. A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6616-6.

    Article  Google Scholar 

  60. Selvam C, Mohan Lal D, Harish S. Thermal conductivity and specific heat capacity of water–ethylene glycol mixture-based nanofluids with graphene nanoplatelets. J Therm Anal Calorim. 2017;129(2):947–55. https://doi.org/10.1007/s10973-017-6276-6.

    Article  CAS  Google Scholar 

  61. Hemmat Esfe M, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85:15 %)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128(1):249–58. https://doi.org/10.1007/s10973-016-5893-9.

    Article  CAS  Google Scholar 

  62. Lee G-J, Rhee CK. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci. 2014;49(4):1506–11.

    Article  CAS  Google Scholar 

  63. Ma W, Yang F, Shi J, Wang F, Zhang Z, Wang S. Silicone based nanofluids containing functionalized graphene nanosheets. Colloids Surf A. 2013;431:120–6.

    Article  CAS  Google Scholar 

  64. Baby TT, Ramaprabhu S. Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res Lett. 2011;6(1):1–9.

    Article  Google Scholar 

  65. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115(17):8527–33.

    Article  CAS  Google Scholar 

  66. Sun Z, Pöller S, Huang X, Guschin D, Taetz C, Ebbinghaus P, et al. High-yield exfoliation of graphite in acrylate polymers: a stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon. 2013;64:288–94.

    Article  CAS  Google Scholar 

  67. Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem. 2011;21(26):9702–9. https://doi.org/10.1039/c0jm04106h.

    Article  CAS  Google Scholar 

  68. Yu W, Xie H, Chen L, Li Y, Li D, editors. The Preparation and Thermal Conductivities Enhacement of Nanofluids Containing Graphene Oxide Nanosheets. 2010 14th International Heat Transfer Conference; 2010: American Society of Mechanical Engineers.

  69. Amiri A, Ahmadi G, Shanbedi M, Etemadi M, Mohd Zubir MN, Chew BT, et al. Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids. RSC Adv. 2016;6(107):105508–277. https://doi.org/10.1039/C6RA22365F.

    Article  CAS  Google Scholar 

  70. Gupta SS, Siva VM, Krishnan S, Sreeprasad T, Singh PK, Pradeep T, et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys. 2011;110(8):084302.

    Article  Google Scholar 

  71. Dhar P, Gupta SS, Chakraborty S, Pattamatta A, Das SK. The role of percolation and sheet dynamics during heat conduction in poly-dispersed graphene nanofluids. Appl Phys Lett. 2013;102(16):163114.

    Article  Google Scholar 

  72. Xia ZY, Giambastiani G, Christodoulou C, Nardi MV, Koch N, Treossi E, et al. Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes. ChemPlusChem. 2014;79(3):439–46.

    Article  CAS  Google Scholar 

  73. Amiri A, Shanbedi M, Rafieerad AR, Rashidi MM, Zaharinie T, Zubir MNM, et al. Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation. J Taiwan Inst Chem Eng. 2017;71:480–93. https://doi.org/10.1016/j.jtice.2016.12.009.

    Article  CAS  Google Scholar 

  74. Park SS, Kim NJ. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement. J Ind Eng Chem. 2014;20(4):1911–5.

    Article  CAS  Google Scholar 

  75. Liu J, Wang F, Zhang L, Fang X, Zhang Z. Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renew Energy. 2014;63:519–23.

    Article  CAS  Google Scholar 

  76. Solangi K, Amiri A, Luhur M, Ghavimi SAA, Kazi S, Badarudin A, et al. Experimental investigation of heat transfer performance and frictional loss of functionalized GNP-based water coolant in a closed conduit flow. RSC Adv. 2016;6(6):4552–633.

    Article  CAS  Google Scholar 

  77. Samira P, Saeed ZH, Motahare S, Mostafa K. Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator. Korean J Chem Eng. 2015;32(4):609–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bizhan Honarvar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, M., Honarvar, B. Synthesis of highly stable nanofluids including polyvinyl alcohol-treated graphene oxide for improved heat dissipation in a tubular heat exchanger. J Therm Anal Calorim 145, 13–25 (2021). https://doi.org/10.1007/s10973-020-09677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09677-w

Keywords

Navigation