Skip to main content
Log in

Heat transfer of viscous fluid in a vertical channel sandwiched between nanofluid porous zones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixed convection in vertical parallel channels is analyzed with the viscous fluid sandwiched between nanofluids within porous material filled in a vertical channel. The concept of single-phase transport of nanofluids is employed to define the nanofluid flow and heat transfer and the Darcy approach is incorporated to describe the circulation within the porous material. Formulated ordinary differential equations which are non-linear and coupled along with the corresponding boundary and interface conditions are solved by the regular perturbation method. The main objective is to investigate the effects of the Grashof and Brinkman numbers, solid volume fraction, porous parameter on the velocity and temperature fields. Results are shown in the graphical and tabular form. The physical characteristics governing the flow such as skin friction and rate of heat transfer are also investigated considering five different materials of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Br :

Brinkman number \(\left( {Br = \frac{{\mu_{{\text{f}}}^{3} }}{{\rho_{{\text{f}}}^{2} h^{2} \left( {T_{{{\text{w1}}}} - T_{\rm w2} } \right)k_{{\text{f}}} }}} \right)\)

G :

Acceleration due to gravity

Gr :

Grashof number \(\left( {Gr = \frac{{g\beta_{{\text{f}}} \left( {T_{{{\text{w1}}}} - T_{{{\text{w2}}}} } \right)\;h^{3} }}{{\upsilon_{{\text{f}}}^{2} }}} \right)\)

h :

Channel width

k :

Thermal conductivity

P :

Non-dimensional pressure \(\left( {P = - \frac{{\rho_{{\text{f}}} h^{3} }}{{\mu_{{\text{f}}}^{2} }} \;\frac{\partial p}{{\partial x}}} \right)\)

T :

Temperature

u :

Dimensional velocity

y :

Space coordinate

β :

Thermal expansion coefficient

θ :

Dimensionless temperature

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Density

σ :

Porous parameter \(\left( {\sigma = {h \mathord{\left/ {\vphantom {h {\sqrt \kappa }}} \right. \kern-\nulldelimiterspace} {\sqrt \kappa }}} \right)\)

τ :

Skin friction

ϕ :

Volume fraction of the solid nanoparticles

nf :

Nanofluid

f :

Base fluid

s :

Solid nanoparticles

i :

Quantities for the fluids in region-I, region-II and region-III

References

  1. Maxwell JA. Treatise on electricity and magnetism. 2nd ed. Oxford: Clarendon Press; 1873.

    Google Scholar 

  2. Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das’ nanofluid model. J Therm Anal Calorim. 2019;135:419–36.

    CAS  Google Scholar 

  3. Izadi M, Hashemi Pour SMR, Yasuri AK, Chamkha AJ. Mixed convection of a nanofluid in a three-dimensional channel. Effect of opposed buoyancy force on hydrodynamic parameters, thermal parameters and entropy generation. J Therm Anal Calorim. 2019;136:2461–75.

    CAS  Google Scholar 

  4. Ahmed SE, Mansour MA, Hussein AK, Mallikarjuna B, Almeshaal MA, Kolsi L. MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu–water nanofluid in the presence of the heat generation and partial slip. J Therm Anal Calorim. 2019;138:1443–600.

    CAS  Google Scholar 

  5. Bondarenko DS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection heat transfer of a nanofluid in a lid-driven enclosure with two adherent porous blocks. J Therm Anal Calorim. 2019;135:1095–105.

    CAS  Google Scholar 

  6. Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B Fluids. 2010;29:472–82.

    Google Scholar 

  7. Tiwari RK, Das MK. Heat transfer augmentation in a two sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50:2002–188.

    CAS  Google Scholar 

  8. Mittal N, Satheesh A, Kumar DS. Numerical simulation of mixed-convection flow in a lid-driven porous cavity using different nanofluids. Heat Transf Asian Res. 2014;43:1–16.

    Google Scholar 

  9. Bianco V, Manca O, Nardini S, Vafai K. Heat transfer enhancement with nanofluids. New York: CRC Press; 2015.

    Google Scholar 

  10. Bianco V, Manca O, Nardini S. Second law analysis of Al2O3-water nanofluid turbulent forced convection in a circular cross section tube with constant wall temperature. Adv Mech Eng. 2013;5:1–12.

    Google Scholar 

  11. Bianco V, Manca O, Nardini S. Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature. Energy. 2014;77:403–13.

    CAS  Google Scholar 

  12. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.

    CAS  Google Scholar 

  13. Mostafizur RM, Saidur R, Abdul Aziz AR, Bhuiyan MHU. Thermo physical properties of methanol based Al2O3 nanofluids. Int J Heat Mass Transf. 2015;85:414–9.

    CAS  Google Scholar 

  14. Choi SUS, Zhang ZG, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252–4.

    CAS  Google Scholar 

  15. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–56.

    CAS  Google Scholar 

  16. Sheikholeslami M, Ellahi R, Hassan M, Soleimani S. A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int. J. Numer Methods Heat Fluid Flow. 2014;24:1906–27.

    Google Scholar 

  17. Sheikholeslami M, Ellahi R, Ashorynejad HR, Domairry G, Hayat T. Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci. 2014;11:486–96.

    CAS  Google Scholar 

  18. Akbar NS, Raza M, Ellahi R. Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field. Eur Phys J Plus. 2014;129:155–67.

    Google Scholar 

  19. Akbar NS, Raza M, Ellahi R. Influence of heat generation and heat flux on peristaltic low with interacting nanoparticles. Eur Phys. 2014;129:185–99.

    Google Scholar 

  20. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater. 2014;369:69–80.

    CAS  Google Scholar 

  21. Ding YL, Alias H, Wen DS, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    CAS  Google Scholar 

  22. Bianco V, Manca O, Nardini S. Numerical simulation of water/Al2O3 nanofluid turbulent convection. Adv Mech Eng. 2010;2010:1–10.

    Google Scholar 

  23. Sheikholeslami M, Shehzad SA, Li Z, Ahmad S. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  24. Sheikholeslami M, Shehzad SA, Li Z, Ahmad S. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Google Scholar 

  25. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. Boca Raton: CRC Press; 2016.

    Google Scholar 

  26. Nield DA, Kuznetsov AV. The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid. Int J Heat Mass Transf. 2011;54:374–8.

    CAS  Google Scholar 

  27. Cheng P, Minkowycz W. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J Geophysical Research. 1977;82:2040–4.

    Google Scholar 

  28. Umavathi JC, Mohite MB. The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion. Meccanica. 2014;49:1159–75.

    Google Scholar 

  29. Ahmed S, Pop I. Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int Commun Heat Mass Transf. 2010;37:987–91.

    Google Scholar 

  30. Sheikholeslami M. Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42:19611–21.

    CAS  Google Scholar 

  31. Cimpean D, Pop I. Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int J Heat Mass Transf. 2012;55:907–14.

    CAS  Google Scholar 

  32. Hajipour M, Dehkordi A. Analysis of nanofluid heat transfer in parallel-plate vertical channel filled with porous medium. Int J Therm Sci. 2012;55:103–13.

    CAS  Google Scholar 

  33. Amrei Hashemi SMH, Dehkordi AM. Modeling and CFD simulation of a mixed-convection flow of regular fluids and nanofluids in vertical porous and regular channels. Heat Transf Asian Res. 2014;43:243–69.

    Google Scholar 

  34. Hatami M, Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall. J Mol Liq. 2014;195:230–9.

    CAS  Google Scholar 

  35. Sheikholeslami M, Kataria HR, Mittal AS. Effect of thermal diffusion and heat-generation on MHD nanofluid flow past an oscillating vertical plate through porous medium. J Mol Liq. 2018;257:12–25.

    CAS  Google Scholar 

  36. Hajizadeh A, Shah NA, Shah SIA, Animasaun IL, Rahimi-Gorji M, Alarifi IM. Free convection flow of nanofluids between two vertical plates with damped thermal flux. J Mol Liq. 2019;289:110964.

    CAS  Google Scholar 

  37. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Google Scholar 

  38. Vafai K, Thiyagaraja R. Analysis of flow and heat transfer at the interface region of a porous medium. Int J Heat Mass Transf. 1987;30:1391–405.

    CAS  Google Scholar 

  39. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  40. Shekhar M, Umavathi JC. Influence of viscous dissipation on non-Darcy mixed convection flow of nanofluid. Heat Transf Asian Res. 2017;46:176–99.

    Google Scholar 

  41. Umavathi JC, Liu IC, Sheremet MA. Convective heat transfer in a vertical rectangular duct filled with nanofluid. Heat Transf Asian Res. 2016;45:661–79.

    Google Scholar 

  42. Umavathi JC, Sheremet MA. Influence of temperature dependent conductivity of a nanofluid in a vertical rectangular duct. Int J Non-Linear Mech. 2016;78:17–28.

    Google Scholar 

  43. Umavathi JC, Ojjela O, Vajravelu K. Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy–Forchheimer–Brinkman model. Int J Therm Sci. 2017;111:511–24.

    CAS  Google Scholar 

  44. Vajravelu K, Prasad KV, Abbasandy S. Convective transport of nanoparticles in multi-layer fluid flow. Appl Math Mech Engl Ed. 2013;34:177–88.

    Google Scholar 

Download references

Acknowledgements

This work of Mikhail A. Sheremet was supported by the Regional Scientific and Educational Mathematical Centre of Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Sheremet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umavathi, J.C., Sheremet, M.A. Heat transfer of viscous fluid in a vertical channel sandwiched between nanofluid porous zones. J Therm Anal Calorim 144, 1389–1399 (2021). https://doi.org/10.1007/s10973-020-09664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09664-1

Keywords

Navigation