Skip to main content
Log in

Usually overlooked problems related with measurements of high-heat effects using power compensation isothermal titration calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research paper deals with the problems associated with power compensation isothermal titration calorimetry. It is demonstrated that at processes, accompanied by large heat effects or/and slow kinetic processes, it is possible to obtain different values of enthalpies with different instruments and different setting parameters. Dynamic power compensation mode in modern calorimeters could namely lead to overcompensation of the heat effects, giving results which are strongly dependent on the chosen experimental parameters. In order to avoid these problems with modern instruments, first the check of a raw signal is proposed and in the case where the switching effect is observed, the experiments have to be carried out with low or disabled power compensation. In this way, the duration of experiments will be longer and the measuring range will be narrower, but the experimental results will be correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christensen JJ, Izatt RM, Hansen LD. New precision thermometric titration calorimeter. Rev Sci Instrum. 1965;36(6):779–83. https://doi.org/10.1063/1.1719702.

    Article  CAS  Google Scholar 

  2. Christensen JJ, Izatt RM, Hansen LD, Partridge JA. Entropy titration: a calorimetric method for the determination of DG, DH, and DS from a single thermometric titration. J Phys Chem. 1966;70:2003–100. https://doi.org/10.1021/j100878a049.

    Article  CAS  Google Scholar 

  3. Hansen LD, Fellingham GW, Russell DJ. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem. 2011;409(2):220–9. https://doi.org/10.1016/j.ab.2010.11.002.

    Article  CAS  PubMed  Google Scholar 

  4. Wiseman T, Williston S, Brandts JF, Lin L-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989;179:131–7. https://doi.org/10.1016/0003-2697(89)90213-3.

    Article  CAS  PubMed  Google Scholar 

  5. Freire E, Mayorga OL, Straume M. Isothermal titration. Anal Chem. 1990;62(18):950–9. https://doi.org/10.1021/ac00217a002.

    Article  Google Scholar 

  6. Ladbury JE, Chowdhry BZ. Biocalorimetry: applications of calorimetry in the biological sciences. New York: Wiley; 1998.

    Google Scholar 

  7. Velazquez Campoy A, Freire E. ITC in the post-genomic era…? Priceless. Biophys Chem. 2005;115(2–3):115–24. https://doi.org/10.1016/j.bpc.2004.12.015.

    Article  CAS  PubMed  Google Scholar 

  8. Chaires JB. Energetics of drug–DNA interactions. Biopolymers. 1997;44(3):201–15. https://doi.org/10.1002/(SICI)1097-0282(1997)44:3%3c201:AID-BIP2%3e3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  9. Haq I. Thermodynamics of drug–DNA interactions. Arch Biochem Biophys. 2002;403:1–15. https://doi.org/10.1016/S0003-9861(02)00202-3.

    Article  CAS  PubMed  Google Scholar 

  10. Lah J, Vesnaver G. Energetic diversity of DNA minor-groove recognition by small molecules displayed through some model ligand-DNA systems. J Mol Biol. 2004;342(1):73–89. https://doi.org/10.1016/j.jmb.2004.07.005.

    Article  CAS  PubMed  Google Scholar 

  11. Ito W, Iba Y, Kurosawa Y. Effects of substitutions of closely related amino acids at the contact surface in an antigen–antibody complex on thermodynamic parameters. J Biol Chem. 1993;268(22):16639–47.

    Article  CAS  Google Scholar 

  12. Ito W, Kurosawa Y. Development of an artificial antibody system with multiple valency using an Fv fragment fused to a fragment of protein A. J Biol Chem. 1993;268(27):20668–75.

    Article  CAS  Google Scholar 

  13. Simic M, De Jonge N, Loris R, Vesnaver G, Lah J. Driving forces of gyrase recognition by the addiction toxin CcdB. J Biol Chem. 2009;284(30):20002–100. https://doi.org/10.1074/jbc.M109.014035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Jonge N, Simic M, Buts L, Haesaerts S, Roelants K, Garcia-Pino A, et al. Alternative interactions define gyrase specificity in the CcdB family. Mol Microbiol. 2012;84(5):965–78. https://doi.org/10.1111/j.1365-2958.2012.08069.x.

    Article  CAS  PubMed  Google Scholar 

  15. Hutchinson E, Manchester KE, Winslow L. Heats of solution of some alkyl sulfates in water. J Phys Chem. 1954;58(12):1124–7. https://doi.org/10.1021/j150522a016.

    Article  CAS  Google Scholar 

  16. Goddard ED, Hoeve CAJ, Benson GC. Heats of micelle formation of paraffin chain salts in water. J Phys Chem. 1957;61(5):593–8. https://doi.org/10.1021/j150551a018.

    Article  CAS  Google Scholar 

  17. Pilcher G, Jones MN, Espada L, Skinner HA. Enthalpy of micellization I. Sodium n-dodecylsulphate. J Chem Thermodyn. 1969;1:381–92. https://doi.org/10.1016/0021-9614(69)90068-8.

    Article  CAS  Google Scholar 

  18. De Lisi R, Ostiguy C, Perron G, Desnoyers JE. Complete thermodynamic properties of nonyl- and decyltrimethylammonium bromides in water. J Colloid Interface Sci. 1979;71(1):147–66. https://doi.org/10.1016/0021-9797(79)90229-7.

    Article  Google Scholar 

  19. Paredes S, Tribout M, Sepulveda L. Enthalpies of micellization of quaternary tetradecyl- and cetyltributyl ammonium. J Phys Chem. 1984;88:1871–5. https://doi.org/10.1021/j150653a040.

    Article  CAS  Google Scholar 

  20. White P, Benson GC. The temperature variation of the heat of micellization of potassium octanoate in aqueous solutions. Trans Faraday Soc. 1959;55:1025–9. https://doi.org/10.1039/TF9595501025.

    Article  CAS  Google Scholar 

  21. Desnoyers JE. Thermochemistry of aqueous micellar systems. Pure Appl Chem. 1980;52:433–44.

    Article  CAS  Google Scholar 

  22. Bashford MT, Woolley EM. Enthalpies of dilution of aqueous decyl-, dodecyl-, tetradecyl-, and hexadecyltrlmethylammonium bromides at 10, 25, 40, and 55 °C. J Phys Chem. 1985;89:3173–9. https://doi.org/10.1021/j100260a044.

    Article  CAS  Google Scholar 

  23. Bijma K, Engberts JBFN. Thermodynamics of micelle formation by 1-methyl-4-alkylpyridinium halides. Langmuir. 1994;10:2578–82. https://doi.org/10.1021/la00020a015.

    Article  CAS  Google Scholar 

  24. Blandamer MJ, Cullis PM, Engberts JBFN. Titration microcalorimetry. J Chem Soc Faraday Trans. 1998;94:2261–7. https://doi.org/10.1039/A802370K.

    Article  CAS  Google Scholar 

  25. Beyer K, Leine D, Blume A. The demicellization of alkyltrimethylammonium bromides in 01M sodium chloride solution studied by isothermal titration calorimetry. Colloids Surf B. 2006;49:31–9. https://doi.org/10.1016/j.colsurfb.2006.02.003.

    Article  CAS  Google Scholar 

  26. Lah J, Bešter-Rogač M, Perger T-M, Vesnaver G. Energetics in correlation with structural features: the case of micellization. J Phys Chem B. 2006;110:23279–91. https://doi.org/10.1021/jp062796f.

    Article  CAS  PubMed  Google Scholar 

  27. Šarac B, Bešter-Rogač M. Temperature and Salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J Colloid Interface Sci. 2009;338:216–21. https://doi.org/10.1016/j.jcis.2009.06.027.

    Article  CAS  PubMed  Google Scholar 

  28. Šarac B, Cerkovnik J, Ancian B, Mériguet G, Roger GM, Durand-Vidal S, et al. Thermodynamic and NMR study of aggregation of dodecyltrimethylammonium chloride in aqueous sodium salicylate solution. Colloid Polym Sci. 2011;289(14):1597–607. https://doi.org/10.1007/s00396-011-2480-2.

    Article  CAS  Google Scholar 

  29. Medoš Ž, Bešter-Rogač M. Two-step micellization model: the case of long-chain carboxylates in water. Langmuir. 2017;33(31):7722–31. https://doi.org/10.1021/acs.langmuir.7b01700.

    Article  CAS  PubMed  Google Scholar 

  30. Šarac B, Medoš Ž, Cognigni A, Bica K, Chen L-J, Bešter-Rogač M. Thermodynamic study for micellization of imidazolium based surface active ionic liquids in water: effect of alkyl chain length and anions. Colloids Surf A. 2017;532:609–17. https://doi.org/10.1016/j.colsurfa.2017.01.062.

    Article  CAS  Google Scholar 

  31. Čobanov I, Šarac B, Medoš Ž, Vraneš M, Gadžurić S, Zec N, et al. Effect of cationic structure of surface active ionic liquids on their micellization: a thermodynamic study. J Mol Liq. 2018;271:437–42. https://doi.org/10.1016/j.molliq.2018.08.152.

    Article  CAS  Google Scholar 

  32. Vazquez-Tato MP, Meijide F, Seijas JA, Fraga F, Vazquez TJ. Analysis of an old controversy: the compensation temperature for micellization of surfactants. Adv Colloid Interface Sci. 2018;254:94–8. https://doi.org/10.1016/j.cis.2018.03.003.

    Article  CAS  PubMed  Google Scholar 

  33. Wadso L, Markova N. A double twin isothermal microcalorimeter. Thermochim Acta. 2000;360:101–7. https://doi.org/10.1016/S0040-6031(00)00574-8.

    Article  CAS  Google Scholar 

  34. Baranauskiene L, Petrikaite V, Matuliene J, Matulis D. Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J Mol Sci. 2009;10(6):2752–62. https://doi.org/10.3390/ijms10062752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mizoue LS, Tellinghuisen J. The role of backlash in the "first injection anomaly" in isothermal titration calorimetry. Anal Biochem. 2004;326(1):125–7. https://doi.org/10.1016/j.ab.2003.10.048.

    Article  CAS  PubMed  Google Scholar 

  36. Tellinghuisen J. Volume errors in isothermal titration calorimetry. Anal Biochem. 2004;333(2):405–6. https://doi.org/10.1016/j.ab.2004.05.061.

    Article  CAS  PubMed  Google Scholar 

  37. Tellinghuisen J. Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl(aq). Anal Biochem. 2007;360(1):47–55. https://doi.org/10.1016/j.ab.2006.10.015.

    Article  CAS  PubMed  Google Scholar 

  38. Tellinghuisen J. Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J Phys Chem B. 2007;111:11531–7. https://doi.org/10.1021/jp074515p.

    Article  CAS  PubMed  Google Scholar 

  39. Tellinghuisen J, Chodera JD. Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal Biochem. 2011;414(2):297–9. https://doi.org/10.1016/j.ab.2011.03.024.

    Article  CAS  PubMed  Google Scholar 

  40. Tellinghuisen J. Designing isothermal titration calorimetry experiments for the study of 1:1 binding: problems with the "standard protocol". Anal Biochem. 2012;424(2):211–20. https://doi.org/10.1016/j.ab.2011.12.035.

    Article  CAS  PubMed  Google Scholar 

  41. Tellinghuisen J. Analysis of multitemperature isothermal titration calorimetry data at very low c: global beats van't Hoff. Anal Biochem. 2016;513:43–6. https://doi.org/10.1016/j.ab.2016.08.024.

    Article  CAS  PubMed  Google Scholar 

  42. Tellinghuisen J. Optimizing isothermal titration calorimetry protocols for the study of 1:1 binding: keeping it simple. Biochim Biophys Acta. 2016;1860(5):861–7. https://doi.org/10.1016/j.bbagen.2015.10.011.

    Article  CAS  PubMed  Google Scholar 

  43. Linkuviene V, Krainer G, Chen WY, Matulis D. Isothermal titration calorimetry for drug design: precision of the enthalpy and binding constant measurements and comparison of the instruments. Anal Biochem. 2016;515:61–4. https://doi.org/10.1016/j.ab.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Fuentes L, Baron C, Mayorga OL. Influence of dynamic power compensation in an isothermal titration microcalorimeter. Anal Chem. 1998;70:4615–23. https://doi.org/10.1021/ac980203u.

    Article  CAS  PubMed  Google Scholar 

  45. Lah J, Pohar C, Vesnaver G. Calorimetric study of the micellization of alkylpyridinium and alkyltrimethylammonium bromides in water. J Phys Chem B. 2000;104(11):2522–6. https://doi.org/10.1021/jp9928614.

    Article  CAS  Google Scholar 

  46. Kroflič A, Šarac B, Bešter-Rogač M. Thermodynamic characterization of 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (chaps) micellization using isothermal titration calorimetry: temperature, salt, and pH dependence. Langmuir. 2012;28(28):10363–71. https://doi.org/10.1021/la302133q.

    Article  CAS  PubMed  Google Scholar 

  47. Medoš Ž, Plechkova NV, Friesen S, Buchner R, Bešter-Rogač M. Insight into the hydration of cationic surfactants: a thermodynamic and dielectric study of functionalized quaternary ammonium chlorides. Langmuir. 2019;35(10):3759–72. https://doi.org/10.1021/acs.langmuir.8b03993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Instruction Manual for LKB 2277 thermal activity monitor. LKB Produkter AB. 1985.

  49. Nano Isothermal Titration Calorimeter (Nano ITC): Getting Started Guide for Models 601000, 601001, 601002. TA Instruments—waters, LCC. 2014. Available from: https://biochem.wisc.edu/sites/default/files/equipment/manuals/tainstrumentsnanoitcusermanual.pdf. Accessed 28 Jan 2020

  50. A Troubleshooting Guide for Isothermal Titration Calorimetry. MicroCal, LCC. 2008. Available from: https://www.chem.gla.ac.uk/staff/alanc/ITC-troubleshoot.pdf. Accessed 28 Jan 2020

Download references

Acknowledgements

Ž.M. is grateful to Slovenian Research Agency for the position of young researcher, enabling him the doctoral study. I.Č. would like to acknowledge the grant of The Public Scholarship, Development, Disability and Maintenance Fund of the Republic of Slovenia enabling her research work and doctoral studies at the University of Ljubljana. The work was supported by the Slovenian Research Agency through Grant No. P1-0201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Šarac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medoš, Ž., Čobanov, I., Bešter-Rogač, M. et al. Usually overlooked problems related with measurements of high-heat effects using power compensation isothermal titration calorimetry. J Therm Anal Calorim 145, 87–96 (2021). https://doi.org/10.1007/s10973-020-09663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09663-2

Keywords

Navigation