Skip to main content
Log in

Surface tension of supercooled graphene oxide nanofluids measured with acoustic levitation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The surface tensions of graphene oxide nanofluids of five mass concentrations were measured by the oscillation droplet method in an acoustic levitator. The oscillation information of the suspension droplets was obtained by combining acoustic levitation with image recognition technology, and a shape correction coefficient a was introduced to modify the Rayleigh equation. Over the temperature ranging from − 7 to 10 °C, the surface tension of the graphene oxide nanofluids increases with increasing mass concentration and decreases with increasing temperature. Compared with the surface tension changes caused by an increase in the mass concentrations of nanofluids from 0.08 to 0.12% at − 7 °C, the surface tension slowly increases from 79.144 to 80.664 mN m−1 when the mass concentration increases from 0.02 to 0.08%. The change rate of the surface tension with temperature is linear in both supercooled and non-supercooled states. For nanofluids with a mass concentration of 0.02%, the values are − 0.185 and − 0.186, respectively, which are basically the same. However, with an increase in mass concentration, the surface tension increases abnormally in supercooled state. For nanofluids with mass concentrations of 0.05% and 0.08%, the curve of the surface tension has an inflection point at − 1.0 °C, while for mass concentrations of 0.10% and 0.12%, the inflection point is at 1.0 °C. All inflection points are distributed around the triple point temperature of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Amplitude

a :

Correction coefficient

B :

The constant term of the Rayleigh equation

\(f_{\text{R}}\), f :

The natural oscillation frequency and oscillation frequency of the droplet, respectively (Hz)

l :

The oscillating mode of liquid suspension droplet

M :

The mass of the droplet (kg)

T, T C :

Absolute temperature and critical temperature, respectively (K)

x :

Time (s)

y, \(y_{0}\) :

The length of droplet’s long axis and the average length, respectively

\(\delta\), \(\overline{\delta }\) :

Surface tension and average surface tension (mN m−1)

\(\omega\) :

Angular velocity (rad s−1)

\(\varphi\) :

Initial phase (rad)

C:

Critical state

R:

Rayleigh equation

0:

Original state

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.

    Google Scholar 

  2. Gomez-Villarejo R, Aguilar T, Hamze S, et al. Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties. J Mol Liq. 2019;277:93–103. https://doi.org/10.1016/j.molliq.2018.12.093.

    Article  CAS  Google Scholar 

  3. Selvaraj V, Morri B, Nair LM, et al. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim. 2019;137(5):1527–36. https://doi.org/10.1007/s10973-019-08042-w.

    Article  CAS  Google Scholar 

  4. Gomez-Villarejo R, Estellé P, Navas J. Boron nitride nanotubes-based nanofluids with enhanced thermal properties for use as heat transfer fluids in solar thermal applications. Sol Energy Mater Sol Cells. 2020;205:110266. https://doi.org/10.1016/j.solmat.2019.110266.

    Article  CAS  Google Scholar 

  5. Fares M, Al-Mayyahi M, Al-Saad M. Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids. Case Stud Therm Eng. 2020;18:100584. https://doi.org/10.1016/j.csite.2020.100584.

    Article  Google Scholar 

  6. Yudong L, Jiangqing W, Chuangjian S, et al. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids. Appl Therm Eng. 2017;115:1226–36. https://doi.org/10.1016/j.applthermaleng.2016.10.051.

    Article  CAS  Google Scholar 

  7. Sidik NAC, Kean TH, Chow HK, et al. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: a review. Int Commun Heat Mass Transf. 2018;94:85–95. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.024.

    Article  CAS  Google Scholar 

  8. Jing F, Yixin L, Pengjv M, et al. Supercooling and heterogeneous nucleation in acoustically levitated deionized water and graphene oxide nanofluids droplets. Exp Therm Fluid Sci. 2019;103:143–8. https://doi.org/10.1016/j.expthermflusci.2019.01.016.

    Article  CAS  Google Scholar 

  9. Guo Z, Haynes BS, Fletcher DF. Simulation of microchannel flows using a 3D height function formulation for surface tension modelling. Int Commun Heat Mass Transf. 2017;89:122–33. https://doi.org/10.1016/j.icheatmasstransfer.2017.09.017.

    Article  Google Scholar 

  10. Kováts P, Thévenin D, Zähringer K. Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column. Int J Multiph Flow. 2020;123:103174. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103174.

    Article  CAS  Google Scholar 

  11. Ferri JK, Carl P, Gorevski N, et al. Separating membrane and surface tension contributions in Pickering droplet deformation. Soft Matter. 2008;4(11):2259–66. https://doi.org/10.1039/B805088K.

    Article  CAS  Google Scholar 

  12. Croce R, Griebel M, Schweitzer MA. Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions. Int J Numer Methods Fluids. 2010;62(9):963–93. https://doi.org/10.1002/fld.2051.

    Article  Google Scholar 

  13. Ding SY, Wang RX, Xu RJ, et al. Effect of surface tension on deformation of free falling drops. Ciesc J. 2016;67(6):2495–502. https://doi.org/10.11949/j.issn.0438-1157.20151867.

    Article  CAS  Google Scholar 

  14. Wan Q, Zhao J, Li H, et al. The wetting behavior of three different types of aqueous surfactant solutions on housefly (Musca domestica) surfaces. Pest Manag Sci. 2019;76(3):1085–93. https://doi.org/10.1002/ps.5620.

    Article  CAS  PubMed  Google Scholar 

  15. Premnath KN, Hajabdollahi F, Welch SW. Surfactant effects on interfacial flow and thermal transport processes during phase change in film boiling. Phys Fluids. 2018;30(4):042108. https://doi.org/10.1063/1.5010333.

    Article  CAS  Google Scholar 

  16. Song D, Song B, Hu H, et al. Effect of a surface tension gradient on the slip flow along a superhydrophobic air–water interface. Phys Rev Fluids. 2018;3(3):033303. https://doi.org/10.1103/PhysRevFluids.3.033303.

    Article  Google Scholar 

  17. Zheng ZZ. Experimental investigation on surface tension of water-based graphene oxide nanofluids. J Therm Sci Technol. 2015;14(3):203–7. https://doi.org/10.1016/10.13738/j.issn.1671-8097.2015.03.006.

    Article  Google Scholar 

  18. Kamatchi R, Venkatachalapathy S, Srinivas BA. Synthesis, stability, transport properties, and surface wettability of reduced graphene oxide/water nanofluids. Int J Therm Sci. 2015;97:17–25. https://doi.org/10.1016/j.ijthermalsci.2015.06.011.

    Article  CAS  Google Scholar 

  19. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(3):1399–409. https://doi.org/10.1007/s10973-015-5034-x.

    Article  CAS  Google Scholar 

  20. Cabaleiro D, Estellé P, Navas H. Dynamic viscosity and surface tension of stable graphene oxide and reduced graphene oxide aqueous nanofluids. J Nanofluids. 2018;7(6):1081–8. https://doi.org/10.1166/jon.2018.1539.

    Article  Google Scholar 

  21. Tanvir S, Qiao L. Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett. 2012;7(1):1–10. https://doi.org/10.1186/1556-276X-7-226.

    Article  CAS  Google Scholar 

  22. Karthikeyan A, Coulombe S, Kietzig AM. Wetting behavior of multi-walled carbon nanotube nanofluids. Nanotechnology. 2017;28(10):1. https://doi.org/10.1088/1361-6528/aa5a5f.

    Article  CAS  Google Scholar 

  23. Berrada N, Hamze S, Desforges A. Surface tension of functionalized MWCNT-based nanofluids in water and commercial propylene-glycol mixture. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111473.

    Article  Google Scholar 

  24. Karami H, Papari-Zare S, Shanbedi M, et al. The thermophysical properties and the stability of nanofluids containing carboxyl-functionalized graphene nano-platelets and multi-walled carbon nanotubes. Int Commun Heat Mass Transf. 2019;108:104302. https://doi.org/10.1016/j.icheatmasstransfer.2019.104302.

    Article  CAS  Google Scholar 

  25. Geng D, Xie WJ, Hong ZY. Containerless solidification of Ag–Cu eutectic alloy under acoustic levitation condition. Sci Sin Physica Mech Astron. 2011;41(3):227. https://doi.org/10.1360/132010-975.

    Article  Google Scholar 

  26. Bouyer C, Chen P, Güven S, et al. A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv Mater. 2016;28(1):161–7. https://doi.org/10.1002/adma.201503916.

    Article  CAS  PubMed  Google Scholar 

  27. Hirayama R, Plasencia DM, Masuda N, et al. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature. 2019;575(7782):320–3. https://doi.org/10.1038/s41586-019-1739-5.

    Article  CAS  PubMed  Google Scholar 

  28. Okada JT, Ishikawa T, Watanabe Y, et al. Surface tension and viscosity of molten vanadium measured with an electrostatic levitation furnace. J Chem Thermodyn. 2010;42(7):856–9. https://doi.org/10.1016/j.jct.2010.02.008.

    Article  CAS  Google Scholar 

  29. Zang D, Yu Y, Chen Z, et al. Acoustic levitation of liquid drops: dynamics, manipulation and phase transitions. Adv Colloid Interface Sci. 2017;243:77–85. https://doi.org/10.1016/j.cis.2017.03.003.

    Article  CAS  PubMed  Google Scholar 

  30. Hasegawa K, Watanabe A, Kaneko A, et al. Coalescence dynamics of acoustically levitated droplets. Micromachines. 2020;11(4):343. https://doi.org/10.3390/mi11040343.

    Article  PubMed Central  Google Scholar 

  31. Lv YJ. Drop dynamics and solidification mechanism of water and aqueous solution under acoustic levitation. Xian: Northwestern Polytechnical University; 2009.

    Google Scholar 

  32. Mehrali M, Sadeghinezhad E, Latibari ST, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9(1):15. https://doi.org/10.1186/1556-276X-9-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rayleigh L. On the capillary phenomena of jets. Proc R Soc Lond. 1879;29(196–199):71–97.

    Google Scholar 

  34. Soda H, McLean A, Miller WA. The influence of oscillation amplitude on liquid surface tension measurements with levitated metal droplets. Metall Mater Trans B. 1978;9(1):145–7.

    Article  Google Scholar 

  35. Shen C, Xie W, Wei B. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement. Sci China Phys Mech Astron. 2010;53(12):2260–5. https://doi.org/10.1007/s11433-010-4125-8.

    Article  Google Scholar 

  36. Zang D, Chen Z, Geng X. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet. Appl Phys Lett. 2016;108(3):031603-1–4. https://doi.org/10.1063/1.4940143.

    Article  CAS  Google Scholar 

  37. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;6:679–98. https://doi.org/10.1109/TPAMI.1986.4767851.

    Article  Google Scholar 

  38. Vargaftik NB, Volkov BN, Voljak LD. International tables of the surface tension of water. J Phys Chem Ref Data. 1983;12(3):817–20. https://doi.org/10.1063/1.555688.

    Article  CAS  Google Scholar 

  39. Reincke F, Hickey SG, Kegel WK, et al. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chem Int Ed. 2004;43(4):458–62. https://doi.org/10.1002/anie.200352339.

    Article  CAS  Google Scholar 

  40. Vafaei S, Purkayastha A, Jain A, et al. The effect of nanoparticles on the liquid–gas surface tension of Bi2Te3 nanofluids. Nanotechnology. 2009;20(18):185702. https://doi.org/10.1088/0957-4484/20/18/185702.

    Article  CAS  PubMed  Google Scholar 

  41. Estelléa P, Cabaleiro D, Żyła G, et al. Current trends in surface tension and wetting behavior of nanofluids. Renew Sustain Energy Rev. 2018;94:931–44. https://doi.org/10.1016/j.rser.2018.07.006.

    Article  CAS  Google Scholar 

  42. Saada MA, Chikh S, Tadrist L. Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties. Int J Heat Mass Transf. 2013;58(1–2):197–208. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.026.

    Article  Google Scholar 

  43. Lü YJ, Wei B. Second inflection point of water surface tension. Appl Phys Lett. 2006;89(16):164106-1–3. https://doi.org/10.1063/1.2364167.

    Article  CAS  Google Scholar 

  44. Kalova J, Mares R. Second inflection point of the surface tension of water. Int J Thermophys. 2012;33(6):992–9. https://doi.org/10.1007/s10765-012-1238-5.

    Article  CAS  Google Scholar 

  45. Wang X, Binder K, Chen C, et al. Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations. Phys Chem Chem Phys. 2019;21(6):3360–9. https://doi.org/10.1039/C8CP05997G.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the technology innovation and application development special project of Chongqing, China (Grant Number: cstc2019jscx-msxmX0046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, B., Wang, D. et al. Surface tension of supercooled graphene oxide nanofluids measured with acoustic levitation. J Therm Anal Calorim 144, 1369–1379 (2021). https://doi.org/10.1007/s10973-020-09659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09659-y

Keywords

Navigation