Skip to main content
Log in

Natural convection of nanoencapsulated phase change suspensions inside a local thermal non-equilibrium porous annulus

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the heat transfer, fluid flow and heat capacity ratio are analyzed in an annulus enclosure filled with porous and saturated by a suspension of nanoencapsulated phase change materials (NEPCMs). It consists of phase change material core and a polymer or non-polymer shell. The presence of nanoparticles in the base fluid and the phase change capability of the nanoparticle’s core improve the thermal properties of the base fluid and thermal control process. The inner cylinder wall is reserved at hot temperatures where the encapsulated particles absorb the heat, while the outer cylinder wall is reserved at cold temperatures where the encapsulated particles release the heat. A local thermal non-equilibrium model is adopted for the porous medium. The parameters studied are Rayleigh number (104 ≤ Ra ≤ 106), Stefan number (0.2 ≤ Ste ≤ ∞), melting point temperature of the core (0.05 ≤ θf ≤ 1), the concentration of the NEPCM particles (0% ≤ ϕ ≤ 5%), radius ratio (1.67 ≤ Rr ≤ 2.5), eccentricity (− 0.67 ≤ Ec ≤ 0.67), Darcy number (10−4 ≤ Da ≤ 10−1), porosity (0.3 ≤ ε ≤ 0.9) and interface heat transfer coefficient (1 ≤ H ≤ 1000). The results show that the dimensionless temperature of fusion (θf) plays the main role in the improvement in NEPCM on the heat transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C p :

Specific heating for pressure constant (KJ kg−1 K−1)

Cr :

Ratio of heat capacity of the suspension to base fluid

Da :

Darcy number

f :

Dimensionless form of phase change behavior

Ec :

Eccentricity

g :

Gravitational acceleration (m s−2)

h sf :

Latent heat of the core (kJ kg−1)

i :

Number of grid case

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability of the porous medium (m2)

N :

Mesh size

Nc :

Suspension conductivity number

Nu :

Nusselt number

Nv :

Suspension dynamic viscosity

Pr :

Prandtl number

Q t :

Total heat transfer rate

Rr :

Radius ratio

r :

Radius (m)

Ra :

Rayleigh number

Ste :

Stefan number

T :

Temperature (K)

T Mr :

Temperature melting range (K)

u :

Velocity component in x-direction (m s−1)

U :

Dimensionless velocity component in X-direction

v :

Velocity component in y-direction (m s−1)

V :

Dimensionless velocity component in Y-direction

X, Y :

Dimensionless coordinate

ι :

Ratio of the mass of the NEPCM to the shell

μ :

Fluid dynamic viscosity (kg s m−1)

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

Δ:

Dimensionless band of phase change

ε :

Porosity of the porous medium

θ :

Dimensionless temperature

λ :

Dimensionless heat capacity

ρ :

Density (kg m−3)

ϕ :

Nanoparticle volume fraction

ψ :

Dimensional stream function (m2 s−1)

Ψ :

Dimensionless stream function

p :

Pressure of suspension (Pa)

P :

Dimensionless pressure of suspension

ν:

Kinematic viscosity (Pa s)

b:

NEPCM suspension

c:

Cold

co:

NEPCM core

bf:

Base fluid

f:

Fusion property

h:

Hot wall

i:

Inner

m:

Porous medium

p:

NEPCM nanoparticle

o:

Outer

s:

Solid matrix of the porous medium

sh:

NEPCM shell

References

  1. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  2. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1–48. https://doi.org/10.1016/j.physrep.2018.11.004

    Article  CAS  Google Scholar 

  3. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2019;791:1–59. https://doi.org/10.1016/j.physrep.2018.11.003

    CAS  Google Scholar 

  4. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    CAS  Google Scholar 

  5. Jou R-Y, Tzeng S-C. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int Commun Heat Mass Transfer. 2006;33(6):727–36.

    Google Scholar 

  6. Sheikholeslami M, Gorji-Bandpy M, Ganji D, Soleimani S, Seyyedi S. Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int Commun Heat Mass Transfer. 2012;39(9):1435–43.

    CAS  Google Scholar 

  7. Ali FH. Numerical simulation of natural convection in an oblique enclosure filled with silver–water nanofluid. Al-Qadisiya J Eng Sci. 2016;9(1):87–105.

    Google Scholar 

  8. Wang L, Yang X, Huang C, Chai Z, Shi B. Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiorno’s model. Appl Therm Eng. 2019;146:318–27.

    Google Scholar 

  9. Bhattacharya A, Calmidi VV, Mahajan RL. Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf. 2002;45(5):1017–31.

    CAS  Google Scholar 

  10. Khan MMA, Ibrahim NI, Mahbubul I, Ali HM, Saidur R, Al-Sulaiman FA. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review. Sol Energy. 2018;166:334–50.

    CAS  Google Scholar 

  11. Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf. 2018;127:838–56.

    CAS  Google Scholar 

  12. Wu F, Lu D, Wang G. Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal nonequilibrium model. Numer Heat Transf Part A: Appl. 2016;69(11):1280–96.

    Google Scholar 

  13. Leong J, Lai F. Natural convection in a concentric annulus with a porous sleeve. Int J Heat Mass Transf. 2006;49(17–18):3016–27.

    Google Scholar 

  14. Alsabery A, Chamkha A, Hussain S, Saleh H, Hashim I. Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv Powder Technol. 2015;26(4):1230–44.

    CAS  Google Scholar 

  15. Alsabery A, Saleh H, Hashim I, Siddheshwar P. Transient natural convection heat transfer in nanoliquid-saturated porous oblique cavity using thermal non-equilibrium model. Int J Mech Sci. 2016;114:233–45.

    Google Scholar 

  16. Alsabery A, Siddheshwar P, Saleh H, Hashim I. Transient free convective heat transfer in nanoliquid-saturated porous square cavity with a concentric solid insert and sinusoidal boundary condition. Superlattices Microstruct. 2016;100:1006–28.

    CAS  Google Scholar 

  17. Alsabery A, Chamkha A, Saleh H, Hashim I, Chanane B. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity. Physica A. 2017;470:20–38.

    CAS  Google Scholar 

  18. Sivasankaran S, Alsabery A, Hashim I. Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity. Physica A. 2018;509:275–93.

    CAS  Google Scholar 

  19. Alsabery A, Chamkha A, Saleh H, Hashim I. Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci Rep. 2017;7(1):2357.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A: Appl. 2014;65(11):1089–113.

    CAS  Google Scholar 

  21. Ismael MA, Chamkha AJ. Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J Porous Media. 2015;18(7):699–716.

    Google Scholar 

  22. Du K, Calautit J, Wang Z, Wu Y, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy. 2018;220:242–73.

    CAS  Google Scholar 

  23. Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153(1–3):217–21.

    CAS  Google Scholar 

  24. Qiu X, Li W, Song G, Chu X, Tang G. Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Sol Energy Mater Sol Cells. 2012;98:283–93.

    CAS  Google Scholar 

  25. Jamekhorshid A, Sadrameli S, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42.

    CAS  Google Scholar 

  26. Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91.

    CAS  Google Scholar 

  27. Liu C, Rao Z, Zhao J, Huo Y, Li Y. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy. 2015;13:814–26.

    CAS  Google Scholar 

  28. Wickramaratne C, Dhau JS, Kamal R, Myers P, Goswami D, Stefanakos E. Macro-encapsulation and characterization of chloride based inorganic phase change materials for high temperature thermal energy storage systems. Appl Energy. 2018;221:587–96.

    CAS  Google Scholar 

  29. Barlak S, Sara ON, Karaipekli A, Yapıcı S. Thermal conductivity and viscosity of nanofluids having nanoencapsulated phase change material. Nanoscale Microscale Thermophys Eng. 2016;20(2):85–96.

    CAS  Google Scholar 

  30. Zhu Y, Qin Y, Wei C, Liang S, Luo X, Wang J, et al. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: compositions, morphologies, and properties. Energy Convers Manag. 2018;164:83–92.

    CAS  Google Scholar 

  31. Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. Int J Heat Mass Transf. 2019;138:738–49.

    Google Scholar 

  32. Ghalambaz M, Groşan T, Pop I. Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J Mol Liq. 2019;293:111432.

    CAS  Google Scholar 

  33. Hajjar A, Mehryan S, Ghalambaz M. Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension. Int J Mech Sci. 2020;166:105243.

    Google Scholar 

  34. Ghalambaz M, Mehryan S, Hajjar A, Veisimoradi A. Unsteady natural convection flow of a suspension comprising Nano-Encapsulated Phase Change Materials (NEPCMs) in a porous medium. Adv Powder Technol. 2019. https://doi.org/10.1016/j.apt.2019.12.010.

    Article  Google Scholar 

  35. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36.

    Google Scholar 

  36. Varol Y, Oztop HF, Pop I. Entropy analysis due to conjugate-buoyant flow in a right-angle trapezoidal enclosure filled with a porous medium bounded by a solid vertical wall. Int J Therm Sci. 2009;48(6):1161–75.

    Google Scholar 

  37. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Google Scholar 

  38. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112:143–55.

    CAS  Google Scholar 

  39. Ali HM, Ashraf MJ, Giovannelli A, Irfan M, Irshad TB, Hamid HM, et al. Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf. 2018;123:272–84.

    CAS  Google Scholar 

  40. Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: a comparison. Int J Heat Mass Transf. 2018;117:1199–204.

    CAS  Google Scholar 

  41. Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93.

    Google Scholar 

  42. Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol Energy. 2019;183:173–203.

    CAS  Google Scholar 

  43. Abbas N, Awan MB, Amer M, Ammar SM, Sajjad U, Ali HM, et al. Applications of nanofluids in photovoltaic thermal systems: a review of recent advances. Physica A: Stat Mech Appl. 2019;536:122513.

    CAS  Google Scholar 

  44. Hassan A, Wahab A, Qasim MA, Janjua MM, Ali MA, Ali HM, et al. Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew Energy. 2020;145:282–93.

    CAS  Google Scholar 

  45. Chai L, Shaukat R, Wang L, Wang HS. A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks. Appl Therm Eng. 2018;135:334–49.

    CAS  Google Scholar 

  46. Chen B, Wang X, Zeng R, Zhang Y, Wang X, Niu J, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp Therm Fluid Sci. 2008;32(8):1638–46.

    CAS  Google Scholar 

  47. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19–20):4410–28.

    CAS  Google Scholar 

  48. Seyf HR, Zhou Z, Ma H, Zhang Y. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Transf. 2013;56(1–2):561–73.

    CAS  Google Scholar 

  49. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106(9):094312.

    Google Scholar 

  50. Venerus DC, Buongiorno J, Christianson R, Townsend J, Bang IC, Chen G, et al. Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications. Appl Rheol. 2010;20(4):11–7.

    Google Scholar 

  51. Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D. Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol. 2015;26(3):935–46.

    CAS  Google Scholar 

  52. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.

    Google Scholar 

  53. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha A. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;72:104–15.

    CAS  Google Scholar 

  54. Schenk O, Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst. 2004;20(3):475–87.

    Google Scholar 

  55. Wriggers P. Nonlinear finite element methods. Berlin: Springer; 2008.

    Google Scholar 

  56. Verbosio F, De Coninck A, Kourounis D, Schenk O. Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. J Comput Sci. 2017;22:99–108.

    Google Scholar 

  57. Matin MH, Pop I. Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid. Int J Heat Mass Transf. 2013;61:353–64.

    Google Scholar 

  58. Nithiarasu P, Seetharamu K, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf. 1997;40(16):3955–67.

    CAS  Google Scholar 

  59. Ghalambaz M, Sheremet MA, Pop I. Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. PLoS ONE. 2015;10(5):e0126486.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghalambaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F.H., Hamzah, H.K., Mozaffari, M. et al. Natural convection of nanoencapsulated phase change suspensions inside a local thermal non-equilibrium porous annulus. J Therm Anal Calorim 141, 1801–1816 (2020). https://doi.org/10.1007/s10973-020-09658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09658-z

Keywords

Navigation