Skip to main content
Log in

Thermal and vibrational biomarkers of porcine oral mucosa

Influence of localization on hydric organization and physical structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study was to develop an experimental protocol to determine specific and reproducible biomarkers of the oral mucosa using a combination of thermal and vibrational techniques. This works deals with the characterization of mandible and maxilla biopsies, 4 mm by diameter, from porcine mucosa in both the hydrated and lyophilized state. Thermogravimetric analysis was carried out to measure hydration level of these tissues and to define the onset of proteins degradation. By differential scanning calorimetry, thermal transitions of water and proteins were evidenced and used to quantify the hydric organization (unfreezable/freezable waters) and to evaluate collagen thermal stability (through denaturation parameters). To complete this protocol, Fourier transform infrared spectroscopy was also used to identify specific vibrational signatures of the main layers of oral mucosa. Total and freezable water amounts are significantly higher in maxilla, due to morphological differences at the macroscopic level, while unfreezable water amount is independent upon localization. Denaturation temperature (in peculiar the temperature corresponding to 50% of collagen denaturation) largely increases with dehydration. This temperature denaturation is also dependent upon localization whatever the hydration, possibly due to differences in cross-links or interactions with other proteins of oral mucosa. The acquisition of thermal and vibrational biomarkers of oral mucosa will contribute to a better knowledge of these soft tissues for further studies on aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin. Adv Drug Deliv Rev. 1993;12:1–12.

    Google Scholar 

  2. Lacoste-Ferré MH, Demont P, Dandurand J, Dantras E, Blandin M, Lacabanne C. Thermo-mechanical analysis of dental silicone polymers. J Mater Sci. 2006;41:7611–6.

    Google Scholar 

  3. Kydd WL, Daly CH, Waltz M. Biomechanics of oral mucosa. Front Oral Physiol Physiol Oral Tissues. 1976;2:108–29.

    CAS  Google Scholar 

  4. Müller HP, Schaller N, Eger T, Heinecke A. Thickness of masticatory mucosa. J Clin Periodontol. 2000;27:431–6.

    PubMed  Google Scholar 

  5. Cruchley AT, Bergmeier LA. Structure and functions of the oral mucosa. In: Bergmeier LA, editor. Oral mucosa heal dis. Cham: Springer; 2018. p. 1–18.

    Google Scholar 

  6. Squier C, Brogden KIMA. Human oral mucosa. In: Squier C, Brogden KA, editors. Hum oral mucosa. 1st ed. West Sussex: Wiley; 2011. p. 19–52.

    Google Scholar 

  7. Prestin S, Rothschild SI, Betz CS, Kraft M. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34:1777–811.

    PubMed  Google Scholar 

  8. Shinkawa T, Hayashida N, Mori K, Washio K, Hashiguchi K, Taira Y, et al. Poor chewing ability is associated with lower mucosal moisture in elderly individuals. Tohoku J Exp Med. 2009;219:263–7.

    PubMed  Google Scholar 

  9. Dawson DV, Drake DR, Hill JR, Brogden KA, Fischer CL, Wertz PW. Organization, barrier function and antimicrobial lipids of the oral mucosa. Int J Cosmet Sci. 2013;35:220–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Groeger S, Meyle J. Oral mucosal epithelial cells. Front Immunol. 2019;10:208.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Katafuchi M, Matsuura T, Atsawasuwan P, Sato H, Yamauchi M. Biochemical characterization of collagen in alveolar mucosa and attached gingiva of pig. Connect Tissue Res. 2007;48:85–92.

    CAS  PubMed  Google Scholar 

  12. Kamath V, Rajkumar K, Kumar A. Expression of type I and type III collagens in oral submucous fibrosis: an immunohistochemical study. J Dent Res Rev. 2015;2:161.

    Google Scholar 

  13. Chavrier C, Couble ML, Magloire H, Grimaud JA. Connective tissue organization of healthy human gingiva. J Periodontal Res. 1984;19:221–9.

    CAS  PubMed  Google Scholar 

  14. Romanes GE, Schroter-Kermani C, Hinz N, Wachtel HC, Bernimoulin J-P. Immunohistochemical localization of collagenous components in healthy periodontal tissues of the rat and marmoset (Callithrix jacchus). J Periodontal Res. 1992;27:101–10.

    Google Scholar 

  15. Bartold PM. Connective tissues of the periodontium. Research and clinical implications. Aust Dent J. 1991;36:255–68.

    CAS  PubMed  Google Scholar 

  16. The R-B, Family C. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978–a00497804978.

    Google Scholar 

  17. Chavrier C. The elastic system fibres in healthy human gingiva. Arch Oral Biol. 1990;35:S223–S22525.

    Google Scholar 

  18. Sakamoto N, Okamoto H, Okuda K. Qualitative and quantitative analyses of bovine gingival glycosaminoglycans. Arch Oral Biol. 1978;23:983–7.

    CAS  PubMed  Google Scholar 

  19. Fujita M, Okazaki J. Glycosaminoglycans in the lamina propria and submucosal layer of the monkey palatal mucosa. J Osaka Dent Univ. 1992;26:67–77.

    CAS  PubMed  Google Scholar 

  20. Schroeder HE, Listgarten MA. The gingival tissues: the architecture of periodontal protection. Periodontol. 2000;2007(13):91–120.

    Google Scholar 

  21. Elias WY. Age-dependent differential expression of apoptotic markers in rat oral mucosa. Asian Pac J Cancer Prev. 2018;19:3245–50.

    CAS  PubMed Central  Google Scholar 

  22. Nakagawa K, Sakurai K, Ueda-Kodaira Y, Ueda T. Age-related changes in elastic properties and moisture content of lower labial mucosa. J Oral Rehabil. 2011;38:235–41.

    CAS  PubMed  Google Scholar 

  23. Séguier S, Bodineau A, Folliguet M. Vieillissement des muqueuses buccales: aspects fondamentaux et cliniques. NPG. 2010;10:237–42.

    Google Scholar 

  24. Muthu Rama Krishnan M, Shah P, Pal M, Chakraborty C, Paul RR, Chatterjee J, et al. Structural markers for normal oral mucosa and oral sub-mucous fibrosis. Micron. 2010;41:312–20.

    CAS  PubMed  Google Scholar 

  25. Pelosse J-J, Pernier C. Bases physiologiques propres à l’adulte. L’Orthodontie Française. 2011;82:5–22.

    Google Scholar 

  26. Tang R, Samouillan V, Dandurand J, Lacabanne C, Lacoste-Ferre M-H, Bogdanowicz P, et al. Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR). Ski Res Technol. 2017;23:573–80.

    CAS  Google Scholar 

  27. Samouillan V, Tang R, Dandurand J, Lacabanne C, Lacoste-Ferré M-H, Villaret A, et al. Chain dynamics of human dermis by thermostimulated currents: a tool for new markers of aging. Ski Res Technol. 2019;25:12–9.

    CAS  Google Scholar 

  28. Appleton J, Heaney TG. A scanning electron microscope study of the surface features of porcine oral mucosa. J Periodontal Res. 1977;12:430–5.

    CAS  PubMed  Google Scholar 

  29. Lacoste-Ferré MH, Demont P, Dandurand J, Dantras E, Duran D, Lacabanne C. Dynamic mechanical properties of oral mucosa: comparison with polymeric soft denture liners. J Mech Behav Biomed Mater. 2011;4:269–74.

    PubMed  Google Scholar 

  30. Olsztyńska-Janus S, Pietruszka A, Kiełbowicz Z, Czarnecki MA. ATR-IR study of skin components: lipids, proteins and water. Part I: temperature effect. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:37–49.

    PubMed  Google Scholar 

  31. Surewicz WK, Mantsch HH, Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993;32:389–94.

    CAS  PubMed  Google Scholar 

  32. Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: ‘traps for new users’. PLoS ONE. 2015;10:e0116491.

    PubMed  PubMed Central  Google Scholar 

  33. Yakimets I, Wellner N, Smith AC, Wilson RH, Farhat I, Mitchell J. Mechanical properties with respect to water content of gelatin films in glassy state. Polymer (Guildf). 2005;46:12577–85.

    CAS  Google Scholar 

  34. Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Anal R Soc Chem. 2018;143:1624–34.

    Google Scholar 

  35. Hynes A, Scott DA, Man A, Singer DL, Sowa MG, Liu K-Z. Molecular mapping of periodontal tissues using infrared microspectroscopy. BMC Med Imaging. 2005;5:2.

    PubMed  PubMed Central  Google Scholar 

  36. Weisberger D, Fischer CJ. Glycogen content of human normal buccal mucosa and buccal leukoplakia. Ann N Y Acad Sci. 2006;85:349–50.

    Google Scholar 

  37. Krafft C, Codrich D, Pelizzo G, Sergo V. Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophotonics. 2008;1:154–69.

    CAS  PubMed  Google Scholar 

  38. Dignass B, Spiegler G. Adenine nucleotides modulate epithelial wound healing in vitro. Eur J Clin Invest. 1998;28:554–61.

    CAS  PubMed  Google Scholar 

  39. Wong PTT, Lacelle S, Fung MFK, Senterman M, Mikhael NZ. Characterization of exfoliated cells and tissues from human endocervix and ectocervix by FTIR and ATR/FTIR spectroscopy. Biospectroscopy. 1995;1:357–64.

    CAS  Google Scholar 

  40. Ukkonen H, Pirhonen P, Herrala M, Mikkonen JJW, Singh SP, Sormunen R, et al. Oral mucosal epithelial cells express the membrane anchored mucin MUC1. Arch Oral Biol. 2017;73:269–73.

    CAS  PubMed  Google Scholar 

  41. Puett D. DTA and heals of hydration of some polypeptides. Biopolymers. 1967;5:327–30.

    CAS  Google Scholar 

  42. Samouillan V, Dandurand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, et al. Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res. 1999;46:531–8.

    CAS  PubMed  Google Scholar 

  43. Dandurand J, Samouillan V, Lacoste-Ferre MH, Lacabanne C, Bochicchio B, Pepe A. Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: signature of the amyloid fibers. Pathol Biol. 2014;62:100–7.

    CAS  PubMed  Google Scholar 

  44. Heys KR, Friedrich MG, Truscott RJW. Free and bound water in normal and cataractous human lenses. Investig Opthalmol Vis Sci. 2008;49:1991.

    Google Scholar 

  45. Tang R, Samouillan V, Dandurand J, Lacabanne C, Nadal-Wollbold F, Casas C, et al. Thermal and vibrational characterization of human skin. J Therm Anal Calorim. 2017;127:1143–54.

    CAS  Google Scholar 

  46. Kerch G, Zicans J, Merijs Meri R, Stunda-Ramava A, Jakobsons E. The use of thermal analysis in assessing the effect of bound water content and substrate rigidity on prevention of platelet adhesion. J Therm Anal Calorim. 2015;120:533–9.

    CAS  Google Scholar 

  47. Kaya Y, Alkan Ö, Alkan EA, Keskin S. Gingival thicknesses of maxillary and mandibular anterior regions in subjects with different craniofacial morphologies. Am J Orthod Dentofac Orthop. 2018;154:356–64.

    Google Scholar 

  48. Wiegand N, Naumov I, Nőt LG, Vámhidy L, Lőrinczy D. Differential scanning calorimetric examination of pathologic scar tissues of human skin. J Therm Anal Calorim. 2013;111:1897–902.

    CAS  Google Scholar 

  49. Samouillan V, Delaunay F, Dandurand J, Merbahi N, Gardou J-P, Yousfi M, et al. The use of thermal techniques for the characterization and selection of natural biomaterials. J Funct Biomater. 2011;2:230–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Samouillan V, Dandurand J, Lacabanne C, Thoma RJ, Adams A, Moore M. Comparison of chemical treatments on the chain dynamics and thermal stability of bovine pericardium collagen. J Biomed Mater Res A. 2003;64:330–8.

    CAS  PubMed  Google Scholar 

  51. Babita K, Kumar V, Rana V, Jain S, Tiwary A. Thermotropic and spectroscopic behavior of skin: relationship with percutaneous permeation enhancement. Curr Drug Deliv. 2006;3:95–113.

    CAS  PubMed  Google Scholar 

  52. Miles CA, Burjanadze TV, Bailey AJ. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol. 1995;245:437–46.

    CAS  PubMed  Google Scholar 

  53. Wallace DG, Condell RA, Donovan JW, Paivinen A, Rhee WM, Wade SB. Multiple denaturational transitions in fibrillar collagen. Biopolymers. 1986;25:1875–93.

    CAS  PubMed  Google Scholar 

  54. Badea E, Della Gatta G, Budrugeac P. Characterisation and evaluation of the environmental impact on historical parchments by differential scanning calorimetry. J Therm Anal Calorim. 2011;104:495–506.

    CAS  Google Scholar 

  55. Shnyrov VL, Lubsandorzhieva VC, Zhadan GG, Permyakov EA. Multi-stage nature of the thermal denaturation process in collagen. Biochem Int. 1992;26:211–7.

    CAS  PubMed  Google Scholar 

  56. Flandin F, Buffevant C, Herbage D. A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta Protein Struct Mol Enzymol. 1984;791:205–11.

    CAS  Google Scholar 

  57. Latorre ME, Velázquez DE, Purslow PP. Differences in the energetics of collagen denaturation in connective tissue from two muscles. Int J Biol Macromol. 2018;113:1294–301.

    CAS  PubMed  Google Scholar 

  58. Wiegand N, Vámhidy L, Kereskai L, Lőrinczy D. Differential scanning calorimetric examination of the ruptured Achilles tendon in human. Thermochim Acta. 2010;498:7–10.

    CAS  Google Scholar 

  59. Trębacz H, Szczęsna A, Arczewska M. Thermal stability of collagen in naturally ageing and in vitro glycated rabbit tissues. J Therm Anal Calorim. 2018;134:1903–11.

    Google Scholar 

  60. Wiegand N, Vámhidy L, Lőrinczy D. Differential scanning calorimetric examination of ruptured lower limb tendons in human. J Therm Anal Calorim. 2010;101:487–92.

    CAS  Google Scholar 

  61. Sillinger T, Lőrinczy D, Kocsis B, Kereskay L, Nöt LG, Wiegand N. Differential scanning calorimetric measurement of cartilage destruction caused by gram-negative septic arthritis. J Therm Anal Calorim. 2014;116:747–52.

    CAS  Google Scholar 

  62. Miles CA, Avery NC. Thermal stabilization of collagen in skin and decalcified bone. Phys Biol. 2011;8:026002.

    PubMed  Google Scholar 

  63. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun WQ, Leung P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater. 2008;4:817–26.

    PubMed  Google Scholar 

  65. Budrugeac P. Phase transitions of a parchment manufactured from deer leather. J Therm Anal Calorim. 2015;120:103–12.

    CAS  Google Scholar 

  66. Tseretely GI, Smirnova OI. DSC study of melting and glass transition in gelatins. J Therm Anal. 1992;38:1189–201.

    Google Scholar 

  67. Wiegand N, Naumov I, Vámhidy L, Kereskai L, Lőrinczy D, Nöt LG. Comparative calorimetric analysis of 13 different types of human healthy and pathologic collagen tissues. Thermochim Acta. 2013;568:171–4.

    CAS  Google Scholar 

  68. Lacoste-Ferré M-H, Hermabessière S, Jézéquel F, Rolland Y. Oral ecosystem in elderly people. Gériatrie Psychol Neuropsychiatr du Viellissement. 2013;11:144–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Samouillan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ober, C., Samouillan, V., Lacoste-Ferré, MH. et al. Thermal and vibrational biomarkers of porcine oral mucosa. J Therm Anal Calorim 144, 1229–1238 (2021). https://doi.org/10.1007/s10973-020-09655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09655-2

Keywords

Navigation