Skip to main content
Log in

An experimental investigation of eco-friendly treated GNP heat transfer growth: circular and square conduit comparison

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the results of bio-based functionalized nanofluids on heat transfer and pressure drop investigation in square and circular tube heat exchangers to obtain enhanced heat dissipation. Graphene nanoplatelet (GNP) was covalently functionalized with the clove bud extractions. At different concentrations of graphene in nanofluid, the results showed higher thermal conductivity with the rising of the suspension concentrations. The nanofluid was compared with the traditional working fluid (water), and the result showed higher thermal conductivity and improved heat transfer coefficient. The present experimental investigation focused on the performance of heat transfer, thermophysical properties and pressure drop of GNP-based water nanofluid in different configurations of heat exchanger tubes. Substantial improvement in the rate of heat transfer with the loading of well-dispersed GNPs in the base fluid was observed. The nanofluid enhances the heat transfer coefficient irrespective of the circular or square flow passage configurations. Furthermore, the heat transfer coefficient enhanced with the increase in concentrations of the nanoparticles in the fluid and the pressure loss increment was much less relative to the gain in heat transfer. The Nusselt number in the circular test section was higher than that in the square test section. Thus, the GNP water-based nanofluids emerged as a potential high-performance heat exchanging liquid utilizing circular flow passage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eastman J, Choi U, Li S, Thompson L, Lee S. Enhanced thermal conductivity through the development of nanofluids. In: MRS Proceedings vol 457. Cambridge University Press; 2016.

  2. Solangi KH, Luhur MR, Badarudin A, Amiri A, Rad Sadri, Zubir MNM, Samira Gharehkhani, Teng KH. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.

    CAS  Google Scholar 

  3. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Alhuyi Nazari M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2019;137(1):307–16.

    CAS  Google Scholar 

  4. Maddah H, Aghayari R, Ahmadi MH, Rahimzadeh M, Ghasemi N. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J Therm Anal Calorim. 2018;134(3):2275–86.

    CAS  Google Scholar 

  5. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2019;135(1):271–81.

    CAS  Google Scholar 

  6. Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A Physicochem Eng Asp. 2018;541:154–64.

    CAS  Google Scholar 

  7. Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int Commun Heat Mass Transfer. 2018;97:92–102.

    CAS  Google Scholar 

  8. Chen H, Witharana S, Jin Y, Kim C, Ding Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 2009;7(2):151–7.

    CAS  Google Scholar 

  9. Baghban A, Pourfayaz F, Ahmadi MH, Kasaeian A, Pourkiaei SM, Lorenzini G. Connectionist intelligent model estimates of convective heat transfer coefficient of nanofluids in circular cross-sectional channels. J Therm Anal Calorim. 2018;132(2):1213–39.

    CAS  Google Scholar 

  10. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2019;135(1):801–11.

    CAS  Google Scholar 

  11. Ahmadi MA, Ahmadi MH, Fahim Alavi M, Nazemzadegan MR, Ghasempour R, Shamshirband S. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. Journal of the Taiwan Institute of Chemical Engineers. 2018;91:383–95.

    CAS  Google Scholar 

  12. Baghban A, Jalali A, Shafiee M, Ahmadi MH, Chau KW. Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids. Engineering Applications of Computational Fluid Mechanics. 2019;13(1):26–39.

    Google Scholar 

  13. Ahmadi MH, Mirlohi A, Alhuyi Nazari M, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018;265:181–8.

    CAS  Google Scholar 

  14. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4-H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    CAS  Google Scholar 

  15. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    CAS  Google Scholar 

  16. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  17. Babazadeh H, Zeeshan A, Jacob K, Hajizadeh A, Bhatti MM. Numerical modelling for nanoparticle thermal migration with effects of shape of particles and magnetic field inside a porous enclosure. Iran J Sci Technol Trans Mech Eng. 2020. https://doi.org/10.1007/s40997-020-00354-9.

    Article  Google Scholar 

  18. Halelfadl S, Estellé P, Maré T. Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime. Exp Thermal Fluid Sci. 2014;55:174–80.

    CAS  Google Scholar 

  19. Noroozi M, Radiman S, Zakaria A. Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids. Journal of Nanomaterials. 2014;2014:10.

    Google Scholar 

  20. Teng TP, Fang YB, Hsu YC, Lin L. Evaluating Stability of Aqueous Multiwalled Carbon Nanotube Nanofluids by Using Different Stabilizers. Journal of Nanomaterials. 2014;2014:15.

    Google Scholar 

  21. Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett. 2011;6(1):280.

    PubMed  PubMed Central  Google Scholar 

  22. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids-A review. Renew Sustain Energy Rev. 2013;21:548–61.

    CAS  Google Scholar 

  23. Harikrishnan S, Magesh S, Kalaiselvam S. Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems. Thermochim Acta. 2013;565:137–45.

    CAS  Google Scholar 

  24. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  25. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Google Scholar 

  26. Nguyen-Thoi T, Bhatti MM, Ali JA, Hamad SM, Sheikholeslami M, Shafee A, et al. Analysis on the heat storage unit through a Y-shaped fin for solidification of NEPCM. J Mol Liq. 2019;292:111378.

    CAS  Google Scholar 

  27. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    CAS  Google Scholar 

  28. Nguyen T, Mochizuki M, Mashiko K, Saito Y, Sanciuc I, Boggs R. Advanced cooling system using miniature heat pipes in mobile PC. IEEE Trans Compon Packag Technol. 2000;23(1):86–90.

    Google Scholar 

  29. Matsuda M, Mochizuki M, Saito Y, Mashiko K, Nguyen T. Two phase closed loop cooling system with a pump. In: 15th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm) 31 May–3 June; 2016.

  30. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  31. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  32. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    CAS  Google Scholar 

  33. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    CAS  Google Scholar 

  34. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Google Scholar 

  35. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  36. Alawi OA, Sidik NAC, Kazi SN, Najafi G. Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization. J Therm Anal Calorim. 2019;135(2):1081–93.

    CAS  Google Scholar 

  37. Akram N, Sadri R, Kazi SN, Zubir MNM, Ridha M, Ahmed W, et al. A comprehensive review on nanofluid operated solar flat plate collectors. J Therm Anal Calorim. 2020;139(2):1309–43.

    CAS  Google Scholar 

  38. Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):965–82.

    CAS  Google Scholar 

  39. Benzema M, Benkahla YK, Labsi N, Ouyahia S-E, El Ganaoui M. Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag–MgO/water hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):1113–32.

    CAS  Google Scholar 

  40. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transfer. 2018;91:90–4.

    CAS  Google Scholar 

  41. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    CAS  Google Scholar 

  42. Li Z, Sheikholeslami M, Bhatti MM. Effect of lorentz forces on nanofluid flow inside a porous enclosure with a moving wall using various shapes of CuO nanoparticles. Heat Transfer Research. 2019;50(7):697–715.

    Google Scholar 

  43. Sheikholeslami M, Bhatti MM. Influence of external magnetic source on nanofluid treatment in a porous cavity. Journal of Porous Media. 2019;22(12):1475–91.

    Google Scholar 

  44. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  45. Manh TD, Nam ND, Abdulrahman GK, Shafee A, Shamlooei M, Babazadeh H, et al. Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09077-9.

    Article  Google Scholar 

  46. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  47. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: A review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  48. Al-Nimr MdA. Al-Dafaie AMA (2014) Using nanofluids in enhancing the performance of a novel two-layer solar pond. Energy. 2014;68:318–26.

    CAS  Google Scholar 

  49. Peyghambarzadeh SM, Hashemabadi SH, Chabi AR, Salimi M. Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers Manag. 2014;86:28–38.

    CAS  Google Scholar 

  50. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, et al. Small particles, big impacts: A review of the diverse applications of nanofluids. J Appl Phys. 2013;113(1):011301.

    Google Scholar 

  51. Huminic G, Huminic A. Application of nanofluids in heat exchangers: A review. Renew Sustain Energy Rev. 2012;16(8):5625–38.

    CAS  Google Scholar 

  52. Murshed SMS, Nieto de Castro CA, Lourenço MJV, Lopes MLM, Santos FJV. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev. 2011;15(5):2342–54.

    CAS  Google Scholar 

  53. Vajjha RS, Das DK. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int J Heat Mass Transf. 2012;55(15):4063–78.

    CAS  Google Scholar 

  54. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    CAS  Google Scholar 

  55. Tlili I, Bhatti M, Hamad SM, Barzinjy AA, Sheikholeslami M, Shafee A. Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects. Phys A. 2019;534:122–36.

    Google Scholar 

  56. Cortes D, Santamarina J. Engineered soils: thermal conductivity; 2012.

  57. Hosseini M, Sadri R, Kazi SN, Bagheri S, Zubir N, Bee Teng C, et al. Experimental Study on Heat Transfer and Thermo-Physical Properties of Covalently Functionalized Carbon Nanotubes Nanofluids in an Annular Heat Exchanger: A Green and Novel Synthesis. Energy Fuels. 2017;31(5):5635–44.

    CAS  Google Scholar 

  58. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.

    CAS  Google Scholar 

  59. Fox EB, Visser AE, Bridges NJ, Amoroso JW. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids. Energy Fuels. 2013;27(6):3385–93.

    CAS  Google Scholar 

  60. Wang X-j, Li X, Yang S. Influence of pH and SDBS on the Stability and Thermal Conductivity of Nanofluids. Energy Fuels. 2009;23(5):2684–9.

    CAS  Google Scholar 

  61. Amiri A, Sadri R, Ahmadi G, Chew BT, Kazi SN, Shanbedi M, et al. Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation. RSC Advances. 2015;5(45):35425–34.

    CAS  Google Scholar 

  62. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67.

    CAS  Google Scholar 

  63. Amiri A, Shanbedi M, Rafieerad AR, Rashidi MM, Zaharinie T, Zubir MNM, et al. Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation. Journal of the Taiwan Institute of Chemical Engineers. 2017;71:480–93.

    CAS  Google Scholar 

  64. Sarafraz MM, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transfer. 2019;107:24–33.

    CAS  Google Scholar 

  65. Oon CS, Amiri A, Chew BT, Kazi SN, Shaw A, Al-Shamma’a A. Increase in convective heat transfer over a backward-facing step immersed in a water-based TiO2nanofluid. Heat Transfer Research. 2018;49(15):1419–29.

    Google Scholar 

  66. Zubir MNM, Muhamad MR, Amiri A, Badarudin A, Kazi SN, Oon CS, et al. Heat transfer performance of closed conduit turbulent flow: Constant mean velocity and temperature do matter! Journal of the Taiwan Institute of Chemical Engineers. 2016;64:285–98.

    CAS  Google Scholar 

  67. Oon CS, Badarudin A, Kazi SN, Fadhli M. Simulation of Heat Transfer to Turbulent Nanofluid Flow in an Annular Passage. Adv Mater Res. 2014;925:625–9.

    Google Scholar 

  68. Oon CS, Togun H, Kazi SN, Badarudin A, Sadeghinezhad E. Computational simulation of heat transfer to separation fluid flow in an annular passage. Int Commun Heat Mass Transfer. 2013;46:92–6.

    Google Scholar 

  69. Hosseini M, Abdelrazek AH, Sadri R, Mallah AR, Kazi SN, Chew BT, et al. Numerical study of turbulent heat transfer of nanofluids containing eco-friendly treated carbon nanotubes through a concentric annular heat exchanger. Int J Heat Mass Transf. 2018;127:403–12.

    CAS  Google Scholar 

  70. Silva VF, Batista LN, De Robertis E, Castro CSC, Cunha VS, Costa MAS. Thermal and rheological behavior of ecofriendly metal cutting fluids. J Therm Anal Calorim. 2016;123(2):973–80.

    CAS  Google Scholar 

  71. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13):3187–96.

    Google Scholar 

  72. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    CAS  Google Scholar 

  73. Sharma K, Sarm PK, Azmi WH, Mamat Rizalman, Kadirgama K. Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. Int J Microscale Nanoscale Thermal Fluid Transp Phenom. 2012;3(4):25.

    Google Scholar 

  74. Incropera FP. Fundamentals of heat and mass transfer. New York: Wiley; 2006.

    Google Scholar 

  75. Gnielinski V. On heat transfer in tubes. Int J Heat Mass Transf. 2013;63:134–40.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of Research Grants IF056-2019, FP143-2019A and King Khalid University Grant, G.R.P-119- 41.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. S. Oon or S. N. Kazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almatar AbdRabbuh, O., Oon, C.S., Kazi, S.N. et al. An experimental investigation of eco-friendly treated GNP heat transfer growth: circular and square conduit comparison. J Therm Anal Calorim 145, 139–151 (2021). https://doi.org/10.1007/s10973-020-09652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09652-5

Keywords

Navigation