Skip to main content
Log in

Optimization of heat transfer properties on ferrofluid flow over a stretching sheet in the presence of static magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main emphasis of the present research is to investigate the composite effects of magnetization force and rotational viscosity on two-dimensional ferrohydrodynamic non-conducting nanofluid flow over a stretching sheet under the influence of the stationary magnetic field. Microrotation of magnetic fluid and rotation of nanoparticles are also considered. Shliomis model is used in the problem formulation, and then the similarity transformation is applied to transform partial differential equations into a set of nonlinear-coupled ordinary differential equations in dimensionless form. Transformed nonlinear-coupled differential equations are solved through the finite element method using COMSOL Multiphysics under the mathematical modeling. Results for velocity distribution, temperature distribution, concentration distribution and angular velocity distribution are obtained after considering the effects of Maxwell parameter, ferromagnetic interaction number, thermal Grashof number, solutal Grashof number, Brownian motion parameter, thermophoresis number, chemical reaction parameter, radiation absorption coefficient, heat generation/absorption parameter, Prandtl number and Schmidt number in the flow. It has been observed that magnetic energy transforms into kinetic energy, thermal boundary layer and concentration boundary layer in the presence of considered physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Positive constant

a :

Distance

c :

Stretching rate (s−1)

\(c_{\mathrm{p}}\) :

Specific heat at constant pressure \(\left( {{\mathrm{J}}\,{\mathrm{kg}}^{ - 1} \,{\mathrm{K}}^{ - 1} } \right)\)

C :

Concentration of the fluid inside the boundary layer (kg m−3)

\(C_{\infty }\) :

Concentration of the fluid outside the boundary layer (kg m−3)

\(C_{\mathrm{w}}\) :

Species concentration at the wall of the temperature (kg m−3)

\(C_{\mathrm{fx}}\) :

Skin friction coefficient

\(D_{\mathrm{B}}\) :

Brownian diffusion coefficient

\(D_{\mathrm{T}}\) :

Thermophoresis coefficient

f :

Dimensionless stream function

Gr:

Thermal Grashof number

Gm:

Solutal Grashof number

g :

Dimensionless angular velocity

\(g_{0}\) :

Acceleration due to gravity (ms−2)

I :

Sum of the particles moment of inertia (kg m2)

H :

Magnetic field intensity (A m−1)

j :

Micro-inertia per unit mass (m2)

k :

Thermal conductivity (W m−1 K−1)

K :

Material parameter

\(K^{\text{a}}\) :

Pyromagnetic coefficient

\(K_{1}\) :

Chemical reaction parameter

l :

Characteristic length

M :

Magnetization (A m−1)

\(m_{1}\) :

Effective magnetic parameter

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

\({\mathrm{Nu}}_{\mathrm{x}}\) :

Nusselt number

Pr:

Prandtl number

\(Q_{0}\) :

Heat absorption coefficient

\(Q_{1}^{\prime }\) :

Radiation absorption coefficient

\(Q_{1}\) :

Radiation absorption coefficient

\(q_{\mathrm{w}}\) :

Heat transfer rate (W)

\(\mathrm{Re}_{\mathrm{x}}\) :

Local Reynolds number

S :

Suction parameter

\({\mathrm{Sh}}_{\mathrm{x}}\) :

Sherwood number

Sc:

Schmidt number

T :

Temperature (K)

\(T_{\mathrm{w}}\) :

Wall temperature (K)

\(T_{\mathrm{c}}\) :

Curie temperature (K)

\(T_{\infty }\) :

Temperature outside the boundary layer (K)

\(u\) :

Velocity component along the sheet (ms−1)

\(v\) :

Velocity component normal to the sheet (ms−1)

\(x\) :

Coordinate along sheet (m)

\(y\) :

Coordinate normal to the sheet (m)

\(\alpha_{1}\) :

Dimensionless distance from origin to dipole

\(\beta\) :

Ferromagnetic interaction number

\(\gamma_{1}\) :

Maxwell parameter

\(\gamma\) :

Chemical reaction parameter

\(\gamma_{0}\) :

Magnetic field strength (A m−1)

\(\gamma_{\mathrm{F}}\) :

Spin gradient viscosity

\(\lambda\) :

Viscous dissipation parameter

\(\lambda_{1}\) :

Relaxation time

\(\varphi\) :

Dimensionless concentration

\(\varPhi_{1}\) :

Volume fraction

\(\varepsilon\) :

Dimensionless curie temperature

\(\eta\) :

Dimensionless coordinate

\(\theta\) :

Dimensionless temperature

\(\lambda\) :

Viscous dissipation parameter

\(\mu\) :

Dynamic viscosity \(\left( {{\mathrm{kg}}\,{\mathrm{m}}^{ - 1} \,{\mathrm{s}}^{ - 1} } \right)\)

\(\nu\) :

Kinematic viscosity \(\left( {{\mathrm{m}}^{ - 2} \,{\mathrm{s}}^{ - 1} } \right)\)

\(\mu_{0}\) :

Permeability

\(\rho\) :

Density \(\left( {{\mathrm{kg}}\,{\mathrm{m}}^{ - 3} } \right)\)

\(\xi\) :

Dimensionless coordinate

\(\chi\) :

Heat absorption parameter

\(\tau_{\mathrm{s}}\) :

Rotational relaxation time \(\left( {{\mathrm{s}}^{ - 1} } \right)\)

\(\varTheta\) :

Magnetic potential (A m−1)

\(\psi\) :

Stream function \(\left( {{\mathrm{m}}^{2} \,{\mathrm{s}}^{ - 1} } \right)\)

\(\left( {\rho c_{\mathrm{p}} } \right)_{\mathrm{p}}\) :

Heat capacitance of nanoparticles

\(\varOmega\) :

Angular velocity (rad s−1)

\(\varOmega_{\mathrm{p}}\) :

Angular velocity of particles (rad s−1)

References

  1. Neuringer JL, Rosensweig RE. Ferrohydrodynamics. Phys Fluids. 1964;7:1927–37. https://doi.org/10.1063/1.1711103.

    Article  Google Scholar 

  2. Neuringer JL. Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients. Int J Non Linear Mech. 1966;1:123–37.

    Article  Google Scholar 

  3. Andersson HI, Valnes OA. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech. 1998;128:39–47.

    Article  Google Scholar 

  4. Zeeshan A, Majeed A. Heat transfer analysis of Jeffery fluid flow over a stretching sheet with suction/injection and magnetic dipole effect. Alex Eng J. 2016;55:2171–81. https://doi.org/10.1016/j.aej.2016.06.014.

    Article  Google Scholar 

  5. Salehpour A, Ashjaee M. Effect of different frequency functions on ferrofluid FHD flow. J Magn Magn Mater. 2019;480:112–31.

    Article  CAS  Google Scholar 

  6. Zhao G, Wang Z, Jian Y. Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects. Int J Heat Mass Transf. 2019;130:821–30.

    Article  CAS  Google Scholar 

  7. Rana P, Bhargava R. Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids. Commun Nonlinear Sci Numer Simul. 2011;16:4318–34.

    Article  Google Scholar 

  8. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60. https://doi.org/10.1080/01457630701850851.

    Article  CAS  Google Scholar 

  9. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240.

    Article  Google Scholar 

  10. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Arabkoohsar A, Ismail KAR. Entropy analysis for a nanofluid within a porous media with magnetic force impact using non-Darcy model. Int Commun Heat Mass Transf. 2020;112:104488.

    Article  CAS  Google Scholar 

  12. Babazadeh H, Ambreen T, Shehzad SA, Shafee A. Ferrofluid non-Darcy heat transfer involving second law analysis: an application of CVFEM. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09264-z.

    Article  Google Scholar 

  13. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  14. Daneshvar Garmroodi MR, Ahmadpour A, Hajmohammadi MR, Gholamrezaie S. Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09045-3.

    Article  Google Scholar 

  15. Ho CJ, Chen MW, Li ZW. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf. 2008;51:4506–16.

    Article  CAS  Google Scholar 

  16. Li Z, Sheikholeslami M, Chamkha AJ, Raizah ZA, Saleem S. Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput Methods Appl Mech Eng. 2018;338:618–33.

    Article  Google Scholar 

  17. Sudarsana Reddy P, Chamkha AJ, Al-Mudhaf A. MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption. Adv Powder Technol. 2017;28:1008–17.

    Article  Google Scholar 

  18. Zubair Akbar M, Ashraf M, Farooq Iqbal M, Ali K. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium. AIP Adv. 2016;6:045222. https://doi.org/10.1063/1.4945440.

    Article  CAS  Google Scholar 

  19. Shahzad A, Ali R, Khan M. On the exact solution for axisymmetric flow and heat transfer over a nonlinear radially stretching sheet. Chin Phys Lett. 2012;29:084705.

    Article  Google Scholar 

  20. Ali R, Shahzad A, Khan M, Ayub M. Analytic and numerical solutions for axisymmetric flow with partial slip. Eng Comput. 2016;32:149–54.

    Article  Google Scholar 

  21. Ahmed J, Mahmood T, Iqbal Z, Shahzad A, Ali R. Axisymmetric flow and heat transfer over an unsteady stretching sheet in power law fluid. J Mol Liq. 2016;221:386–93.

    Article  CAS  Google Scholar 

  22. Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Appl. 2016;69:1186–200. https://doi.org/10.1080/10407782.2015.1125709.

    Article  CAS  Google Scholar 

  23. Khan M, Ali R, Shahzad A. MHD Falkner-Skan flow with mixed convection and convective boundary conditions. Walailak J Sci Technol. 2013;10:517–29.

    Google Scholar 

  24. Kim J, Kang YT, Choi CK. Analysis of convective instability and heat transfer characteristics of nanofluids. Phys Fluids. 2004;16:2395–401. https://doi.org/10.1063/1.1739247.

    Article  CAS  Google Scholar 

  25. Hayat T, Khan MI, Imtiaz M, Alsaedi A, Waqas M. Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole. Phys Fluids. 2016;28:102003. https://doi.org/10.1063/1.4964684.

    Article  CAS  Google Scholar 

  26. Shahzad A, Ali R. Approximate analytic solution for magneto-hydrodynamic flow of a non-Newtonian fluid over a vertical stretching sheet. Can J Appl Sci. 2012;2(1):202–15.

    Google Scholar 

  27. Saedi M, Aminfar H, Mohammadpourfard M, Maroofiazar R. Simulation of ferrofluid flow boiling in helical tubes using two-fluid model. Heat Mass Transf und Stoffuebertragung. 2019;55:1–16. https://doi.org/10.1007/s00231-018-2400-9.

    Article  CAS  Google Scholar 

  28. Kumar R, Raju CSK, Sekhar KR, Reddy GV. Three dimensional MHD ferrous nanofluid flow over a sheet of variable thickness in slip flow regime. J Mech. 2017;35:1–12.

    CAS  Google Scholar 

  29. Vatani A, Woodfield PL, Nguyen N-T, Dao DV. Thermomagnetic convection around a current-carrying wire in ferrofluid. J Heat Transf. 2017;139:104502.

    Article  Google Scholar 

  30. Majeed A, Zeeshan A, Ellahi R. Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J Mol Liq. 2016;223:528–33.

    Article  CAS  Google Scholar 

  31. Hayat T, Ahmad S, Khan MI, Alsaedi A. Exploring magnetic dipole contribution on radiative flow of ferromagnetic Williamson fluid. Results Phys. 2018;8:545–51.

    Article  Google Scholar 

  32. Sokolov A, Ali R, Turek S. An AFC-stabilized implicit finite element method for partial differential equations on evolving-in-time surfaces. J Comput Appl Math. 2015;289:101–15.

    Article  Google Scholar 

  33. Ram P, Bhandari A. Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk. Results Phys. 2013;3:55–60.

    Article  Google Scholar 

  34. Ram P, Bhandari A, Sharma K. Effect of magnetic field-dependent viscosity on revolving ferrofluid. J Magn Magn Mater. 2010;322:3476–80.

    Article  CAS  Google Scholar 

  35. Yasmeen T, Hayat T, Khan MI, Imtiaz M, Alsaedi A. Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous–heterogeneous reactions. J Mol Liq. 2016;223:1000–5. https://doi.org/10.1016/j.molliq.2016.09.028.

    Article  CAS  Google Scholar 

  36. Ghasemian M, Najafian Ashrafi Z, Goharkhah M, Ashjaee M. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields. J Magn Magn Mater. 2015;381:158–67.

    Article  CAS  Google Scholar 

  37. Shliomis MI, Morozov KI. Negative viscosity of ferrofluid under alternating magnetic field. Phys Fluids. 1994;6:2855–61. https://doi.org/10.1063/1.868108.

    Article  CAS  Google Scholar 

  38. Bacri JC, Perzynski R, Shliomis MI, Burde GI. Negative-viscosity effect in a magnetic fluid. Phys Rev Lett. 1995;75:2128–31. https://doi.org/10.1103/PhysRevLett.75.2128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bhandari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A., Husain, A. Optimization of heat transfer properties on ferrofluid flow over a stretching sheet in the presence of static magnetic field. J Therm Anal Calorim 144, 1253–1270 (2021). https://doi.org/10.1007/s10973-020-09636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09636-5

Keywords

Navigation