Skip to main content
Log in

Human skin thermal properties determination using a calorimetric sensor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of the calorimetric sensor developed is to measure the heat flux transmitted by conduction between the human body surface and a thermostat located inside the sensor. The measurement surface has an area of 2 × 2 cm2. We have verified that the measured heat flux decreases linearly with the increase in the thermostat temperature. This allows us to define an equivalent thermal resistance between the internal temperature of the human body and the temperature of the thermostat. This equivalent thermal resistance can be determined by measuring the heat flux for different constant temperatures of the thermostat. An alternative is to perform a single measurement with linear programming of the thermostat temperature. With this type of measurement and from the calorimetric signal, it is also possible to determine an equivalent heat capacity of the skin in the measurement zone. In this article, we present the modelling and simulation of the sensor operation when the thermostat temperature varies linearly. We also present experimental measurements performed on the human body and with reference Joule dissipations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Socorro F. Rodríguez de Rivera M (2010) Development of a calorimetric sensor for medical application. Part I. Operating model. J Therm Anal Calorim. 2010;99:799–802.

    Article  CAS  Google Scholar 

  2. Jesús Ch, Socorro F, Rodríguez de Rivera M. Development of a calorimetric sensor for medical application. Part II. Identification and simulation. J Therm Anal Calorim. 2013;113:1003–7.

    Article  Google Scholar 

  3. Jesús Ch, Socorro F, Rodríguez de Rivera M. Development of a calorimetric sensor for medical application. Part III. Operating methods and applications. J Therm Anal Calorim. 2013;113:1009–13.

    Article  Google Scholar 

  4. Jesús Ch, Socorro F, Rodríguez de Rivera HJ, Rodriguez de Rivera M. Development of a calorimetric sensor for medical application. Part IV. Deconvolution of the calorimetric signal. J Therm Anal Calorim. 2014;116:151–5.

    Article  Google Scholar 

  5. Socorro F, Rodríguez de Rivera PJ, Rodríguez de Rivera M. Calorimetric minisensor for the localized measurement of surface heat dissipated from the human body. Sensors. 2016;16:1864.

    Article  Google Scholar 

  6. Socorro F, Rodríguez de Rivera PJ, de Rivera Rodríguez, Mi Rodríguez, de Rivera M. Mathematical model for localised and surface heat flux of the human body obtained from measurements performed with a calorimetry minisensor. Sensors. 2017;17:2749.

    Article  Google Scholar 

  7. Rodríguez de Rivera PJ, de Rivera Rodríguez, Mi Socorro F, Rodríguez de Rivera M. Method for transient heat flux determination in human body surface using a direct calorimetry sensor. Measurement. 2019;39:1–9.

    Article  Google Scholar 

  8. Rodríguez de Rivera PJ, de Rivera Rodríguez, Mi Socorro F, Rodríguez de Rivera M. Measurement of human body surface heat flux using a calorimetric sensor. J Therm Biol. 2019;81:178–84.

    Article  Google Scholar 

  9. Hansen LD. Toward a standard nomenclature for calorimetry. Thermochim Acta. 2001;371:19–22.

    Article  CAS  Google Scholar 

  10. Lahiri BB, Bagavathiaappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol. 2012;55:221–35.

    Article  CAS  Google Scholar 

  11. Livingston S, Nolan R, Frim J, Reed L, Limmer R. A thermographic study of the effect of body composition and ambient temperature on the accuracy of mean skin temperature calculations. Eur J Appl Physiol Occup Physiol. 1987;56:120–5.

    Article  CAS  Google Scholar 

  12. Dębiec-Bąk A, Kuligowski T, Skrzek A. Analyzing thermoregulation processes in early school-age girls and boys through thermography. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08843-z.

    Article  Google Scholar 

  13. Kasprzyk T, Cholewka A, Kucewicz M, Sieron K, Sillero-Quintana M, Morawiec T, Stanek A. A quantitative thermal analysis of cyclists’ thermo-active base layers. J Therm Anal Calorim. 2019;136:1689–99.

    Article  CAS  Google Scholar 

  14. Godoy SE, Hayat MM, Ramirez DA, Myers SA, Padilla RS, Krishna S. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging. Biomed Opt Express. 2017;8(4):2301–23.

    Article  Google Scholar 

  15. Nowak I, Mraz M, Mraz M. Thermography assessment of spastic lower limb in patients after cerebral stroke undergoing rehabilitation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08844-y.

    Article  Google Scholar 

  16. Kasprzyk-Kucewicz T, Cholewka A, Bałamut K, Kownacki P, Kaszuba N, Kaszuba M, Stanek A, Sieroń K, Stransky J, Pasz A, Morawiec T. The applications of infrared thermography in surgical removal of retained teeth effects assessment. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09457-6.

    Article  Google Scholar 

  17. Isalgue A, Ortin J, Torra V, Viñals J. Heat flux calorimeters: dynamical model localized time constants. An Fis. 1980;76:192–6.

    Google Scholar 

  18. Socorro F, de Rivera MR, Jesús Ch. A thermal model of a flow calorimeter. J Therm Anal Calorim. 2001;64:357–66.

    Article  CAS  Google Scholar 

  19. Socorro F, de la Nuez I, Rodríguez de Rivera M. Calibration of isothermal heat conduction calorimeters: case of flow calorimeters. Measurement. 2003;33:241–50.

    Article  Google Scholar 

  20. Kirchner R, de Rivera MR, Seidel JM, Torra V. Identification of micro-scale calorimetric devices. Part VI. An approach by RC-representative model to improvements in TAM microcalorimeters. J Therm Anal Calorim. 2005;82:179–84.

    Article  CAS  Google Scholar 

  21. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Opt. 1998;9(1):112–47.

    Article  Google Scholar 

  22. Nelder JA, Mead C. A simplex method for function minimization. Comput J. 1965;7:308–13.

    Article  Google Scholar 

  23. Optimization ToolboxTM User’s Guide (2004) 5th printing; Revised for Version 3.0 (Release 14); The MathWorks, Inc.: Natic, MA, USA.

Download references

Acknowledgements

The authors would like to acknowledge Professor J.A. López Calbet for his help in the experimental measurements performed in “Laboratorio de Rendimiento Humano de la Universidad de Las Palmas de Gran Canaria”.

Funding

This work was completed while Pedro Jesús Rodríguez de Rivera was beneficiary of a pre-doctoral grant given by the “Ministerio de Ciencia, Innovación y Universidades (Spain)” (No. FPU18/02990) and the “Agencia Canaria de Investigación, Innovación y Sociedad de la Información del Gobierno de Canarias (Spain)” (No. TESIS2019010023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rodríguez de Rivera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez de Rivera, P.J., Rodríguez de Rivera, M., Socorro, F. et al. Human skin thermal properties determination using a calorimetric sensor. J Therm Anal Calorim 142, 461–471 (2020). https://doi.org/10.1007/s10973-020-09627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09627-6

Keywords

Navigation