Skip to main content
Log in

Improving stability and thermal properties of TiO2-based nanofluids for concentrating solar energy using two methods of preparation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids are considered a promising alternative to the classic fluids used in heat transfer processes. One interesting application of nanofluids is their use as a heat transfer fluid in thermosolar plants, such as those using concentrating solar power (CSP) technology. Therefore, this study presents the preparation of nanofluids based on TiO2 nanoparticles and the most common thermal oil used in CSP plants. The nanofluids were prepared using a one-step method by means of the solvothermal synthesis of TiO2 and also using a two-step method by means of ultrasonic waves and stabilizing the nanoparticles using 1-octadecanethiol as a surfactant. The stability of the nanofluids was analysed using UV–Vis spectroscopy, particle size and ζ potential measurements. The formation of TiO2 nanoparticles in the one-step method was detected using X-ray diffraction, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Thermophysical properties were also measured obtaining an atypical improvement of isobaric specific heat of up to 25.4% for the nanofluids prepared by the two-step method. For the nanofluids prepared by the two-step and one-step methods, thermal conductivity increased by up to 52.7% and 31.4% at higher temperatures, respectively. Finally, enhancements of up to 35.4% of the heat transfer coefficient were estimated, which means these nanofluids are suitable for being used as heat transfer fluids in CSP plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans ASME. 1999;121(2):280–9. https://doi.org/10.1115/1.2825978.

    Article  CAS  Google Scholar 

  2. Mwesigye A, Huan ZJ, Meyer JP. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl Energy. 2015;156:398–412. https://doi.org/10.1016/j.apenergy.2015.07.035.

    Article  CAS  Google Scholar 

  3. Yu W, Xie HQ. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012. https://doi.org/10.1155/2012/435873.

    Article  Google Scholar 

  4. Nasiri A, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp Therm Fluid Sci. 2011;35(4):717–23. https://doi.org/10.1016/j.expthermflusci.2011.01.006.

    Article  CAS  Google Scholar 

  5. Sadeghi R, Etemad SG, Keshavarzi E, Haghshenasfard M. Investigation of alumina nanofluid stability by UV–Vis spectrum. Microfluid Nanofluid. 2015;18(5–6):1023–30. https://doi.org/10.1007/s10404-014-1491-y.

    Article  CAS  Google Scholar 

  6. Li YJ, Zhou JE, Tung S, Schneider E, Xi SQ. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101. https://doi.org/10.1016/j.powtec.2009.07.025.

    Article  CAS  Google Scholar 

  7. Paul G, Sarkar S, Pal T, Das PK, Manna I. Concentration and size dependence of nano-silver dispersed water based nanofluids. J Colloid Interface Sci. 2012;371:20–7. https://doi.org/10.1016/j.jcis.2011.11.057.

    Article  CAS  PubMed  Google Scholar 

  8. Lee GJ, Kim CK, Lee MK, Rhee CK, Kim S, Kim C. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta. 2012;542:24–7. https://doi.org/10.1016/j.tca.2012.01.010.

    Article  CAS  Google Scholar 

  9. Chang H, Jwo CS, Lo CH, Tsung TT, Kao MJ, Lin HM. Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev Adv Mater Sci. 2005;10(2):128–32.

    CAS  Google Scholar 

  10. Gomez-Villarejo R, Navas J, Martin EI, Sanchez-Coronilla A, Aguilar T, Gallardo JJ, et al. Preparation of Au nanoparticles in a non-polar medium: obtaining high-efficiency nanofluids for concentrating solar power. An experimental and theoretical perspective. J Mater Chem A. 2017;5(24):12483–97. https://doi.org/10.1039/c7ta00986k.

    Article  CAS  Google Scholar 

  11. Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83(14):2931–3. https://doi.org/10.1063/1.1602578.

    Article  CAS  Google Scholar 

  12. Wei XH, Kong TT, Zhu HT, Wang LQ. CuS/Cu2S nanofluids: synthesis and thermal conductivity. Int J Heat Mass Transf. 2010;53(9–10):1841–3. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.006.

    Article  CAS  Google Scholar 

  13. Wei XH, Zhu HT, Kong TT, Wang LQ. Synthesis and thermal conductivity of Cu2O nanofluids. Int J Heat Mass Transf. 2009;52(19–20):4371–4. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.073.

    Article  CAS  Google Scholar 

  14. Abbassi Y, Talebi M, Shirani AS, Khorsandi J. Experimental investigation of TiO2/water nanofluid effects on heat transfer characteristics of a vertical annulus with non-uniform heat flux in non-radiation environment. Ann Nucl Energy. 2014;69:7–13. https://doi.org/10.1016/j.anucene.2014.01.033.

    Article  CAS  Google Scholar 

  15. Coco-Enriquez L, Munoz-Anton J, Martinez-Val JM. Dual loop line-focusing solar power plants with supercritical Brayton power cycles. Int J Hydrog Energy. 2017;42(28):17664–80. https://doi.org/10.1016/j.ijhydene.2016.12.128.

    Article  CAS  Google Scholar 

  16. Erdogan A, Colpan CO, Cakici DM. Thermal design and analysis of a shell and tube heat exchanger integrating a geothermal based organic Rankine cycle and parabolic trough solar collectors. Renew Energy. 2017;109:372–91. https://doi.org/10.1016/j.renene.2017.03.037.

    Article  CAS  Google Scholar 

  17. Niederberger M, Bard MH, Stucky GD. Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc. 2002;124(46):13642–3. https://doi.org/10.1021/ja027115i.

    Article  CAS  PubMed  Google Scholar 

  18. Aguilar T, Carrillo-Berdugo I, Gomez-Villarejo R, Gallardo JJ, Martinez-Merino P, Pinero JC, et al. A solvothermal synthesis of TiO2 nanoparticles in a non-polar medium to prepare highly stable nanofluids with improved thermal properties. Nanomaterials. 2018;8(10):816. https://doi.org/10.3390/nano8100816.

    Article  CAS  PubMed Central  Google Scholar 

  19. Navas J, Sanchez-Coronilla A, Martin EI, Teruel M, Gallardo JJ, Aguilar T, et al. On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: an experimental and molecular dynamics study. Nano Energy. 2016;27:213–24. https://doi.org/10.1016/j.nanoen.2016.07.004.

    Article  CAS  Google Scholar 

  20. Teruel M, Aguilar T, Martinez-Merino P, Carrillo-Berdugo I, Gallardo-Bernal JJ, Gomez-Villarejo R, et al. 2D MoSe2-based nanofluids prepared by liquid phase exfoliation for heat transfer applications in concentrating solar power. Sol Energy Mater Sol Cells. 2019;200:109972. https://doi.org/10.1016/j.solmat.2019.109972.

    Article  CAS  Google Scholar 

  21. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ. NIST Standard Reference Database 20, Version 41. Gaithersburg: National Institute of Standards and Technology; 2012.

    Google Scholar 

  22. Ghazzal MN, Wojcieszak R, Raj G, Gaigneaux EM. Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM. Beilstein J Nanotechnol. 2014;5:68–766. https://doi.org/10.3762/bjnano.5.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cabaleiro D, Gracia-Fernandez C, Legido JL, Lugo L. Specific heat of metal oxide nanofluids at high concentrations for heat transfer. Int J Heat Mass Transf. 2015;88:872–9. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.107.

    Article  CAS  Google Scholar 

  24. Mousavi NSS, Kumar S. Effective heat capacity of ferrofluids—analytical approach. Int J Therm Sci. 2014;84:267–74. https://doi.org/10.1016/j.ijthermalsci.2014.05.012.

    Article  CAS  Google Scholar 

  25. Sharma AK, Tiwari AK, Dixit AR. Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev. 2016;53:779–91. https://doi.org/10.1016/j.rser.2015.09.033.

    Article  CAS  Google Scholar 

  26. Shin D, Banerjee D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J Heat Trans ASME. 2013;135(3):032801. https://doi.org/10.1115/1.4005163.

    Article  CAS  Google Scholar 

  27. Shin D, Banerjee D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic. Int J Heat Mass Transf. 2014;74:210–4. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.066.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministerio de Ciencia, Innovación y Universidades (Spanish Government), Grant Numbers RTI2018-096393-B-I00 and UNCA15-CE-2945. This investigation is a contribution to the COST (European Cooperation in Science and Technology) Action CA15119: Overcoming Barriers to Nanofluids Market Uptake (NanoUptake). Paloma Martínez-Merino acknowledges the EU COST Action CA15119: Overcoming Barriers to Nanofluids Market Uptake for financial support in the participation of the 1st International Conference on Nanofluids (ICNf) and the 2nd European Symposium on Nanofluids (ESNf) participation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Aguilar or J. Navas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, T., Carrillo-Berdugo, I., Martínez-Merino, P. et al. Improving stability and thermal properties of TiO2-based nanofluids for concentrating solar energy using two methods of preparation. J Therm Anal Calorim 144, 895–905 (2021). https://doi.org/10.1007/s10973-020-09615-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09615-w

Keywords

Navigation