Skip to main content
Log in

Thermal conductivity and interfacial effect of parylene C thin film using the 3-omega method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Parylene has attracted a great interest in the last years because of its potential use in many fields. Among all kinds of parylene, parylene C seems the most interesting one for a large range of applications. In this paper, we are interested in its thermal properties, and in particular the thermal conductivity of thin films. This later is determined by the so-called three-omega method. This technique makes use of a thin conducting strip, in contact with the material under test. The metal wire serves both as a heat source for applying a heat flux and a sensitive thermometer for measuring the surface temperature. The thermal conductivity of parylene C films of different thicknesses (210, 440 and 760 nm) deposited by CVD process on borosilicate substrates is investigated. It is demonstrated that the effective thermal conductivity increases as a function of the thickness of thin film (81.20 × 10−3, 88.37 × 10−3 and 92.81 × 10−3 W m−1 K−1 are measured, respectively). This effect is produced by the phonon scattering boundary at the interface between substrate/film and film/heater. To highlight the presence of contact thermal resistances and to estimate their value, a numerical approach, based on a finite element method using the software COMSOL® Multiphysics, is also proposed. This study shows that the main part (97%) of the interfacial thermal resistance is due to the contact between the parylene C film and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(R\) :

Resistance of the metal strip (Ω)

\(R_{0}\) :

Metal strip resistance at room temperature (Ω)

\(\Delta T\) :

Temperature variation in the metal strip (°C)

\(d_{\text{f}}\) :

Film thickness (m)

\(2b\) :

Width of the metal strip (m)

\(l\) :

Length of the metal strip (m)

\(q_{{\left({2\omega}\right)}}\) :

Thermal penetration depth (m)

\(\Delta T_{{{\text{s}}+{\text{f}}}}\) :

Temperature amplitude of the heater (substrate and film) (°C)

\(\Delta T_{\text{s}\left({2\omega }\right)}\) :

Amplitude temperature oscillation due to the substrate alone (°C)

\(\Delta T_{\text{f}}\) :

Temperature oscillation due to the presence of the thin film (°C)

\(P_{\text{rms}}\) :

Power per meter of length (W m−1)

\(k_{\text{s}}\) :

Substrate thermal conductivity (W m−1 K−1)

\(k_{\text{f}}\) :

Film thermal conductivity (W m−1 K−1)

\(k_{\text{eff}}\) :

Effective thermal conductivity (W m−1 K−1)

\(k_{\text{i}}\) :

Intrinsic thermal conductivity (W m−1 K−1)

\(D_{\text{s}}\) :

Thermal diffusivity of the substrate (m² s−1)

\(f_{\text{linear}}\) :

Frequency of the linear regime (Hz)

\(V_{{3\omega}}\) :

Third harmonic of the voltage (V)

\(V_{0}\) :

Initial voltage (V)

\(V_{{3\omega_{1} }}\) :

Third harmonic of the voltage at input current frequency \(\omega_{1}\) (V)

\(V_{{3\omega_{2} }}\) :

Third harmonic of the voltage at input current frequency \(\omega_{2}\) (V)

\(R_{\text{eff}}\) :

Effective thermal resistance (m2K W−1)

\(R_{\text{f}}\) :

Thermal resistance of the film (m2K W−1)

\(R_{\text{int}}\) :

Interfacial thermal resistance (m2K W−1)

H :

Coefficient of thermal convection (W m−2 K−1)

\(\beta_{\text{h}}\) :

Temperature coefficient of the resistance (TCR) of the heater (°C−1)

\(\xi\) :

Fitting constant having a value of roughly 0.923

References

  1. Li W, Rodger Damien C, Meng E, James Weiland D, Humayun MS, Tai Y. Wafer-level parylene packaging with integrated RF electronics for wireless retinal prostheses. J Microelectromech Syst. 2010;19(4):735–42.

    Article  Google Scholar 

  2. Fan Z, Engel JM, Chen J, Liu C. Parylene surface-micromachined membranes for sensor applications. J Microelectromech Syst. 2004;13(3):484–90.

    Article  Google Scholar 

  3. Metzen RPV, Stieglitz T. The effects of annealing on mechanical, chemical and physical properties and structural stability of Parylene C. Biomed Microdevices. 2013;15:727–35.

    Article  CAS  Google Scholar 

  4. Kuppusami S, Oskouei RH. Parylene coatings in medical devices and implants. Univers J Biomed Eng. 2015;3(2):9–14.

    Article  Google Scholar 

  5. Bahrami P, Yamamoto N, Chen Y, Manohara H. Capacitance-based damage detection sensing for aerospace structural composites. In: Sensors and smart structures technologies for civil. Mechanical and aerospace systems. 2014;90612M. https://doi.org/10.1117/12.2045160.

  6. Selvarasah S, Li X, Busnaina A, Dokmeci MR. Parylene-C passivated carbon nanotube flexible transistors. Appl Phys Lett. 2010;97:153120.

    Article  Google Scholar 

  7. Wadhawani S. Parylene coatings and application. Paint Coat Ind. 2006;22(10):32–44.

    Google Scholar 

  8. Yu P, Zhang LC, Zhang WY, Das J, Kim KB, Eckert J. Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. Mater Sci Eng A. 2007;444:206–13.

    Article  Google Scholar 

  9. Hasselman DPH, Johnson L. Effective conductivity of composites with interfacial thermal resistance. J Compos Mater. 1987;21(6):508–15.

    Article  Google Scholar 

  10. Yamane T, Nagai N, Katayama S, Todoki M. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J Appl Phys. 2002;91(12):9772–6.

    Article  CAS  Google Scholar 

  11. Kim JW, Yang HS, Jun YH, Kim KC. Interfacial effect on thermal conductivity of diamond-like carbon films. J Mech Sci Technol. 2010;24(7):1511–4.

    Article  Google Scholar 

  12. Macedo F, Ferreira JA. Thermal contact resistance evaluation in polymer-based carbon fiber composites. Rev Sci Instrum. 2003;74(14-1):828–30.

    Article  CAS  Google Scholar 

  13. Kim JW, Jeong GE, Yang HS. Thermal conductivity of Gd2Zr2O7 thin films using thermal-impedance method. Phys Status Solidi A. 2011;208(5):1105–10.

    Article  CAS  Google Scholar 

  14. Alam MT, King S, Haque MA. Characterization of very low thermal conductivity thin films. J Therm Anal Calorim. 2014;115(2):1541–50.

    Article  CAS  Google Scholar 

  15. Pujula M, Sánchez-Rodríguez D, Lopez-Olmedo JP, Farjas J, Roura P. Measuring thermal conductivity of powders with differential scanning calorimetry. J Therm Anal Calorim. 2016;125(2):571–7.

    Article  CAS  Google Scholar 

  16. Gaal PS, Thermitus MA, Stroe Daniela E. Thermal conductivity measurements using the flash method. J Therm Anal Calorim. 2004;78(1):185–9.

    Article  CAS  Google Scholar 

  17. Cahill DG, Fischer HE, Klitsner T, Swartz ET, Pohl RO. The thermal conductivity of thin films: measurements and understanding. J Vac Sci Technol. 1989;7:1259–65.

    Article  CAS  Google Scholar 

  18. Cahill DG. Thermal conductivity measurement from 30 to 750 K: the 3-omega method. Rev Sci Instrum. 1990;61:802–8.

    Article  CAS  Google Scholar 

  19. Guermoudi AA, Cresson PY, Ouldabbes A, Lasri T. Simulation and experimental study of GaAs substrate thermal conductivity using 3-omega method. In|: 8th international conference sciences of electronics, technologies of information and telecommunications. 2018. Hammamet-Tunisia. https://doi.org/10.1007/978-3-030-21009-0_16.

  20. Cahill DG, Katiyar M, Abelson JR. Heat transport in micron thick a-Si: H films. Philos Mag B. 1994;50:6077–81.

    CAS  Google Scholar 

  21. Cahill DG, Lee S-M, Selinder T. Thermal conductivity of k-Al2O3 wear-resistant coatings. J Appl Phys. 1998;83:5783–6.

    Article  CAS  Google Scholar 

  22. Yusibani E, Woodfield PL, Fujii M, Shinzato K, Zhang X, Takata Y. Application of the three-omega method to measurement of thermal conductivity and thermal diffusivity of hydrogen gas. Int J Thermophys. 2009;30:397–415.

    Article  CAS  Google Scholar 

  23. Hahtela O, Ruoho M, Mykkänen E, Ojasalo K, Nissilä J, Manninen A, Heinonen M. Thermal conductivity of thermoelectric materials using 3ω method. Int J Thermophys. 2015;36:3255–71.

    Article  CAS  Google Scholar 

  24. Borca-Tasciuc T, Achimov D, Liu WL, Chen G, Ren H-W, Lin C-H, Pei SS. Thermal conductivity of Inas/ Alsb superlattices. Microscale Thermophys Eng. 2001;5(3):225–31.

    Article  CAS  Google Scholar 

  25. Battaglia JL, Wiemer C, Fanciulli M. An accurate low-frequency model for the 3ω method. J Appl Phys. 2007;101(10):104510.

    Article  Google Scholar 

  26. Lee SM, Cahill DG. Heat transport in thin dielectric films. J Appl Phys. 1997;81:2590–5.

    Article  CAS  Google Scholar 

  27. Matinlinna JP, Lung CYK, Tsoi H. Silane adhesion mechanism in dental applications and surface treatments. J Dent Mater Sci. 2018;34:13–28.

    Article  CAS  Google Scholar 

  28. Cariou FE, Valley DJ, Loeb WE. Poly-para-xylylene in thin film applications. In: IEEE-proceedings of the electronic compound conference, New York, 1965. p. 54.

  29. Kramer P, Sharma AK, Hennecke EE, Yasuda H. Polymerization of para-xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C. J Polym Sci. 1984;22:475.

    CAS  Google Scholar 

  30. Borca-Tasciuc T, Kumar AR, Chen G. Data reduction in 3ω method for thin-film thermal conductivity determination. Rev Sci Instrum. 2001;71(4):2139–47.

    Article  Google Scholar 

  31. Chen X, An M, Guo R, Feng H, Tang N, Zang J, Yang N. The measurements of thermal conductivity of polyethylene thin film. In: 1st ACTS proceedings of the Asian conference on thermal sciences 2017. Jeju Island-Korea.

  32. Bogner M, Benstetter G, Fu YQ. Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method. Surf Coat Technol. 2017;320:91–6.

    Article  CAS  Google Scholar 

  33. Griffin AJ, Brotzen FR and Loos PJ. The effective transverse thermal conductivity of amorphous Si3N4 thin films. J Appl Phys. 1994;76:4007.

  34. Rausch S, Rauh D, Deibel C, Vidi S, Ebert HP. Thin-film thermal-conductivity measurement on semi-conducting polymer material using the 3ω technique. Int J Thermophys. 2013;34:820–30.

    Article  CAS  Google Scholar 

  35. Zeng L, Collins KC, Hu Y, Luckyanova MN, Maznev AA, Huberman S, Chiloyan V, Zhou J, Huang X, Nelson KA, Chen G. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures. Sci Rep. 2015;5:17131.

    Article  CAS  Google Scholar 

  36. Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructure. Phys Rev B. 2013;87:035437.

    Article  Google Scholar 

  37. Li Y, Huang Y, Krentz T, Natarajan B, Neely T, Schadler LS. Polymer nanocomposite interfaces: the hidden lever for optimizing performance in spherical nanofilled polymers. Interface Interphase Polym Nanocompos. 2016;19–73. https://doi.org/10.1002/9781119185093.ch1.

  38. Neubauer E, Korb G, Eisenmenger-Sittner C, Bangert H, Chotikaprakhan S, Dietzel D, Mansanares AM, Bein BK. The influence of mechanical adhesion of copper coatings on carbon surfaces on the interfacial thermal contact resistance. Thin Solid Films. 2003;433:160–5.

    Article  CAS  Google Scholar 

  39. Friedrich JF, Unger WES, Lippitz A, Koprinarov I, Kühn G, Weidner S, Vogel L. Chemical reactions at polymer surfaces interacting with gas plasma or with metal atoms: their relevance to adhesion. Surf Coat Technol. 1999;116–119:772–82.

    Article  Google Scholar 

  40. Shao WZ, Ivanov VV, Zhen L, Cui YS, Wang Y. A study of graphitization of diamond in copper-diamond composite materials. Mater Lett. 2003;58:146–9.

    Article  Google Scholar 

  41. Jacquot A, Lenoir B, Dauscher A, Stolzer M, Meusel J. Numerical simulation of the 3ω method for measuring the thermal conductivity. J Appl Phys. 2002;91:4733–8.

    Article  CAS  Google Scholar 

  42. Al-Khudary N, Cresson PY, Wei W, Happy HG, Lasri T. Inkjet printing technology for polymer thermal conductivity measurement by the three-omega method. Polym Test. 2014;40:187–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Abdelkader Guermoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guermoudi, A.A., Cresson, P.Y., Ouldabbes, A. et al. Thermal conductivity and interfacial effect of parylene C thin film using the 3-omega method. J Therm Anal Calorim 145, 1–12 (2021). https://doi.org/10.1007/s10973-020-09612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09612-z

Keywords

Navigation