Skip to main content
Log in

Experimental performance of moderately high temperature heat pump with working fluid R1234ze(Z)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low global warming potential working fluid R1234ze(Z) is anticipated to be the working fluid of the choice for the moderately high temperature heat pump in industrial applications. In this paper, the thermodynamic theoretical studies of the working fluids R114, R134a, R227ea, R236fa, R245fa and R1234ze(Z) were performed, and the theoretical analysis showed that the thermodynamic properties of R1234ze(Z) were better than other working fluids. The experimental investigations of the working fluids R134a, R227ea, R236fa, R245fa and R1234ze(Z) were carried out on a vapor compression heat pump system in the condensation temperature range of 70–85 °C with the cycle temperature lift (difference between condensation temperature and evaporation temperature) of 45 K. In addition, the experimental cycle performance of R1234ze(Z) with the cycle temperature lift of 58 K was also tested and compared with that with the cycle temperature lift of 45 K in the condensation temperature range of 70–85 °C. The coefficient of performance (COP) of R245fa was first measured to test the credibility of the newly developed apparatus. The test showed that the COP of R1234ze(Z) could reach up to 3.55 when the condensation temperature was 85 °C with the temperature lift of 45 K. The above assessments demonstrate that R1234ze(Z) is suitable for moderately high temperature heat pump applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

COP:

Coefficient of performance

m :

Mass flow rate of working fluid (kg h1)

P :

Pressure (MPa)

P c :

Critical pressure (MPa)

Pr :

Pressure ratio

Q :

Heat capacity (W)

t :

Temperature (°C)

T b :

Normal boiling temperature (K)

T c :

Critical temperature (K)

T :

Temperature lift (K)

VHC:

Volumetric heating capacity (MJ m3)

W :

Input power of compressor (W)

γ :

Latent heat (kJ kg1)

ω :

Acentric factor

cond:

Condensation

disch:

Discharge

evap:

Evaporation

CFCs:

Chlorofluorocarbons

GWP:

Global warming potential

HCs:

Hydrocarbons

HCFCs:

Hydrochlorofluorocarbons

HFCs:

Hydrofluorocarbons

HFOs:

Hydrofluoroolefins

HTHP:

High temperature heat pump

MHTHP:

Moderately high temperature heat pump

ODP:

Ozone depletion potential

ORC:

Organic Rankine cycle

References

  1. Yu X, Zhang Y, Den N, Chen C, Ma L, Dong L, et al. Experimental performance of high temperature heat pump with near-azeotropic refrigerant mixture. Energy Build. 2014;78:43–9.

    Google Scholar 

  2. Jakobs R, Cibis D, Laue HJ. Status and outlook: industrial heat pumps. International refrigeration and air conditioning conference at Purdue. 2010; pp 1–8.

  3. Yildirim N, Toksoy M, Gokcen G. District heating system design for a university campus. Energy Build. 2006;38(9):1111–9.

    Google Scholar 

  4. Omer AM. Ground-source heat pumps systems and applications. Renew Sustain Energy Rev. 2008;12(2):344–71.

    CAS  Google Scholar 

  5. Wu X, Xing Z, He Z, Wang X, Chen W. Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry. Appl Therm Eng. 2016;93:1193–201.

    Google Scholar 

  6. Bi Y, Guo T, Zhang L, Chen L. Solar and ground source heat-pump system. Appl Energy. 2004;78(2):231–45.

    Google Scholar 

  7. Li H, Yang H. Potential application of solar thermal systems for hot water production in Hong Kong. Appl Energy. 2009;86(2):175–80.

    Google Scholar 

  8. Shi L, Zan C. Research methods and performance analysis for the moderately high temperature refrigerant. Sci China Ser E Technol Sci. 2008;51(8):1087–95.

    CAS  Google Scholar 

  9. Hakkaki-Fard A, Aidoun Z, Ouzzane M. Improving cold climate air-source heat pump performance with refrigerant mixtures. Appl Therm Eng. 2015;78:695–703.

    Google Scholar 

  10. Zhao Z, Xing Z, Hou F, Tian Y, Jiang S. Theoretical and experimental investigation of a novel high temperature heat pump system for recovering heat from refrigeration system. Appl Therm Eng. 2016;107:758–67.

    CAS  Google Scholar 

  11. Šarevski MN, Šarevski VN. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression. Appl Therm Eng. 2017;117:355–65.

    Google Scholar 

  12. Rangel-Hernández VH, Belman-Flores JM, Rodríguez-Valderrama DA, Pardo-Cely D, Rodríguez-Muñoz AP, Ramírez-Minguela JJ. Exergoeconomic performance comparison of R1234yf as a drop-in replacement for R134a in a domestic refrigerator. Int J Refrig. 2019;100:113–23.

    Google Scholar 

  13. Pabon JG, Khosravi A, Nunes R, Machado L. Experimental investigation of pressure drop during two-phase flow of R1234yf in smooth horizontal tubes with internal diameters of 3.2 mm to 8.0 mm. Int J Refrig. 2019;104:426–36.

    Google Scholar 

  14. Li Z, Liang K, Jiang H. Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system. Appl Therm Eng. 2019;153:646–54.

    CAS  Google Scholar 

  15. Fazelnia H, Sajadi B, Azarhazin S, Behabadi MA, Zakeralhoseini S. Experimental study of the heat transfer coefficient and pressure drop of R1234yf condensing flow in flattened smooth tubes. Int J Refrig. 2019;106:120–32.

    CAS  Google Scholar 

  16. Longo GA, Mancin S, Righetti G, Zilio C. R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: assessing flow boiling on an experimental basis. Int J Refrig. 2019;108:336–46.

    CAS  Google Scholar 

  17. An B, Yang F, Duan Y, Yang Z. Measurements and new vapor pressure correlation for HFO-1234ze(E). J Chem Eng Data. 2017;62:328–32.

    CAS  Google Scholar 

  18. An B, Yang F, Yang K, Duan Y, Yang Z. PvT property of HFO-1234ze(E) in the gaseous phase. J Chem Eng Data. 2018;63:2075–80.

    CAS  Google Scholar 

  19. Li J, Liu Q, Ge Z, Duan Y, Yang Z. Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 °C heat sources. Energy Convers Manage. 2017;149:140–54.

    CAS  Google Scholar 

  20. Liu W, Meinel D, Wieland C, Spliethoff H. Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation. Energy. 2014;67:106–16.

    CAS  Google Scholar 

  21. Cataldo F, Mastrullo R, Mauro AM, Vanoli GP. Fluid selection of organic Rankine cycle for low-temperature waste heat recovery based on thermal optimization. Energy. 2014;72:159–67.

    CAS  Google Scholar 

  22. McLinden MO, Kazakov AF, Brown JS, Domaski PA. A thermodynamic analysis of refrigerants: possibilities and tradeoffs for low-GWP refrigerants. Int J Refrig. 2014;38:80–92.

    CAS  Google Scholar 

  23. Hodnebrog Ø, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, et al. Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review. Rev Geophys. 2013;51:300–78.

    Google Scholar 

  24. Brown JS, Zilio C, Cavallini A. The fluorinated olefin R-1234ze(Z) as a high-temperature heat pumping refrigerant. Int J Refrig. 2009;32(6):1412–22.

    CAS  Google Scholar 

  25. Brown JS, Zilio C, Cavallini A. Thermodynamic properties of eight fluorinated olefins. Int J Refrig. 2010;33(2):235–41.

    CAS  Google Scholar 

  26. Zhang SJ, Wang HX, Guo T. Evaluation of non-azeotropic mixtures containing HFOs as potential refrigerants in refrigeration and high-temperature heat pump systems. Sci China Ser E Technol Sci. 2010;53(7):1855–61.

    CAS  Google Scholar 

  27. Fedele L, Nicola GD, Brown JS, Bobbo S, Zilio C. Measurements and correlations of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)) saturation pressure. Int J Thermophys. 2014;35(1):1–12.

    CAS  Google Scholar 

  28. Fukuda S, Kondou C, Takata N, Koyama S. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps. Int J Refrig. 2014;40:161–73.

    CAS  Google Scholar 

  29. Akasaka R, Higashi Y, Miyara A, Koyama S. A fundamental equation of state for cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)). Int J Refrig. 2014;44:168–76.

    CAS  Google Scholar 

  30. Fedele L, Brown JS, Nicola GD, Bobbo S, Scattolini M. Measurements and correlations of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)) subcooled liquid density and vapor-phase PvT. Int J Thermophys. 2014;35(8):1415–34.

    CAS  Google Scholar 

  31. Petr P, Raabe G. Evaluation of R-1234ze(Z) as drop-in replacement for R-245fa in organic Rankine cycles – from thermophysical properties to cycle performance. Energy. 2015;93:266–74.

    CAS  Google Scholar 

  32. Kondou C, Nagata R, Nii N, Koyama S, Higashi Y. Surface tension of low GWP refrigerants R1243zf, R1234ze(Z), and R1233zd(E). Int J Refrig. 2015;53:80–9.

    CAS  Google Scholar 

  33. Higashi Y, Hayasaka S, Shirai C, Akasaka R. Measurements of PρT properties, vapor pressures, saturated densities, and critical parameters for R1234ze(Z) and R245fa. Int J Refrig. 2015;52:100–8.

    CAS  Google Scholar 

  34. Kondou C, Koyama S. Thermodynamic assessment of high-temperature heat pumps using low-GWP HFO refrigerants for heat recovery. Int J Refrig. 2015;53:126–41.

    CAS  Google Scholar 

  35. Katsuyuki T. Measurements of vapor pressure and saturated liquid density for HFO−1234ze(E) and HFO−1234ze(Z). J Chem Eng Data. 2016;61(4):1645–8.

    CAS  Google Scholar 

  36. Lago S, Giuliano Albo PA, Brown JS. Compressed liquid speed of sound measurements of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)). Int J Refrig. 2016;65:55–9.

    CAS  Google Scholar 

  37. Manente G, Lio LD. Influence of axial turbine efficiency maps on the performance of subcritical and supercritical organic Rankine cycle systems. Energy. 2016;107:761–72.

    CAS  Google Scholar 

  38. Gong M, Zhao Y, Dong X, Guo H, Shen J, Wu J. Measurements of isothermal (vapor + liquid) equilibrium for the (propane + cis-1,3,3,3-tetrafluoropropene) system at temperatures from (253.150 to 293.150) K. J Chem Thermodyn. 2016;98:319–23.

    CAS  Google Scholar 

  39. Zhang X, Dong X, Guo H, Gong M, Shen J, Wu J. Measurements and correlations of isothermal (vapour + liquid) equilibrium for the isobutane (R600a) + cis-1,3,3,3-tetrafluoropropene (R1234ze(Z)) system at temperatures from (303.150 to 353.150) K. J Chem Thermodyn. 2016;103:349–54.

    CAS  Google Scholar 

  40. Zhang X, Dong X, Guo H, Zhao Y, Zhang H, Gong M, et al. Measurements of isothermal (vapour + liquid) equilibrium for the 1,1,2,2–1,1,2,2-tetrafluoroethane (R134) + cis-1,3,3,3-tetrafluoropropene (R1234ze(Z)) system at temperatures from (303.150 to 343.150) K. J Chem Thermodyn. 2017;111:20–6.

    CAS  Google Scholar 

  41. Zhuo KF, Zhao YX, Dong XQ, Gong MQ, Wu JF. Saturation pressure measurement and correlation of cis-1,3,3,3-tetrafluoropropene at temperatures ranging from 243.152 to 373.150 K. Chin Sci Bull. 2017;62(23):2691–7.

    Google Scholar 

  42. Romeo R, Giuliano Albo PA, Lago S, Brown JS. Experimental liquid densities of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)) and trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)). Int J Refrig. 2017;79:176–82.

    CAS  Google Scholar 

  43. Lozano-Martin D, Madonna Ripa D, Gavioso RM. Speed of sound in gaseous cis-1,3,3,3-tetrafluoropropene (R1234ze(Z)) between 307 K and 420 K. Int J Refrig. 2019;100:37–47.

    CAS  Google Scholar 

  44. Yang J, Ye Z, Yu B, Ouyang H, Chen J. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E). Energy. 2019;173:721–31.

    CAS  Google Scholar 

  45. Zhang X. Experimental measurements of saturated vapor pressures for R1234ze(Z), R600a, and R134. J Thermophys Heat Transf. 2019;33(3):779–84.

    CAS  Google Scholar 

  46. Kondou C, Mishima F, Liu JF, Koyama S. Condensation and evaporation of R134a, R1234ze (E) and R1234ze (Z) flow in horizontal microfin tubes at higher temperature. International refrigeration and air conditioning conference at Purdue. 2014.

  47. Longo GA, Zilio C, Righetti G, Brown JS. Experimental assessment of the low GWP refrigerant HFO-1234ze(Z) for high temperature heat pumps. Exp Therm Fluid Sci. 2014;57:293–300.

    CAS  Google Scholar 

  48. Yeo J, Yamashita S, Hayashida M, Koyama S. A loop thermosyphon type cooling system for high heat flux. J Electron Cooling Therm Control. 2014;4:128–37.

    Google Scholar 

  49. Nagata R, Kondou C, Koyama S. Comparative assessment of condensation and pool boiling heat transfer on horizontal plain single tubes for R1234ze(E), R1234ze(Z), and R1233zd(E). Int J Refrig. 2016;63:157–70.

    CAS  Google Scholar 

  50. Kondou C, Umemoto S, Koyama S, Mitooka Y. Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze(Z) and R1234ze(E) with a superhydrophilic boiling surface. Appl Therm Eng. 2017;118:147–58.

    CAS  Google Scholar 

  51. Nagata R, Kondou C, Koyama S. Enhancement of R1234ze(Z) pool boiling heat transfer on horizontal titanium tubes for high-temperature heat pumps. Sci Technol Built Environ. 2017;23(6):923–32.

    Google Scholar 

  52. McLinden MO. Thermodynamic evaluation of refrigerants in the vapour compression cycle using reduced properties. Int J Refrig. 1988;11(3):134–43.

    CAS  Google Scholar 

  53. Zhang SJ. Working fluids for the moderate and high temperature heat pump based on conventional R134a heat pump system. Master thesis. Tianjin University, Tianjin;2009.

  54. Guo T. Theoretical and experimental cycle performance of working fluids for moderate/high temperature heat pumps. Master thesis. Tianjin University, Tianjin;2008.

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (Project No. 2017MS089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, H. Experimental performance of moderately high temperature heat pump with working fluid R1234ze(Z). J Therm Anal Calorim 144, 1535–1545 (2021). https://doi.org/10.1007/s10973-020-09610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09610-1

Keywords

Navigation